
BROUGHT TO YOU IN PARTNERSHIP WITH

PAGE 2TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Welcome Letter
By Abhishek Gupta, Principal Developer Advocate at AWS

A decade has passed since Kubernetes emerged in
the tech world — a span that represents a significant
portion of many IT careers. Amusingly, some of us may
recall job postings demanding extensive Kubernetes
experience long before such a feat was even possible.
We can finally claim to have "10 years of Kubernetes
experience"!

To be honest, when I first encountered Kubernetes
many years ago, I was skeptical. The steep learning
curve and challenges of running it in production were
daunting. However, as I gradually peeled back the
layers, I began to appreciate its design; I discovered
a solid platform that had not only abstracted
foundation components such as compute, storage,
and networking, but also container runtimes, cloud
providers, and a way to extend Kubernetes using CRDs.

I knew that I had just scratched the surface, but the
realization of Kubernetes' extensibility was my true
"aha" moment!

It's clear that Kubernetes isn't just a technology —
it's a movement. It's reshaping how we think about
application architecture, deployment, and scalability.
Kubernetes has long outgrown its "buzzword" status,
and it finds itself in a unique position: a mature
technology with much left to offer.

If the past decade is any indication, the next 10 years
of Kubernetes promise to be even more transformative.

As the world of application development continues to
evolve, Kubernetes is poised to evolve right alongside
it, with the community prioritizing changes that both
improve user experiences and enhance the project's
sustainability.

The 2024 Kubernetes in the Enterprise Trend Report
will dive into the current and evolving state of
Kubernetes. Articles written by DZone community
experts explore how Kubernetes streamlines the
SDLC, the challenges of managing AI/ML workloads
in Kubernetes, mitigating container-specific threats,
and considerations for Kubernetes observability. The
"Key Research Findings" section supports these articles
in addition to providing details on cost optimization,
architecture, and design.

Drawing from real-world experiences and production
environments, this report offers practical guidance
to help you navigate the complexities of Kubernetes
implementation and optimization in enterprise settings.
Whether you're a seasoned Kubernetes professional or
just starting out, we hope this report equips you with
actionable strategies and best practices that you can
apply directly to your own Kubernetes deployments.

Best,

Abhishek Gupta

Over the course of his career, Abhishek has worn multiple hats including engineering,
product management, and developer advocacy. Most of his work has revolved around
open-source technologies, including distributed data systems and cloud-native
platforms. Abhishek is also an open source contributor and avid blogger.

Abhishek Gupta

@abhirockzz
@abhirockzz
@abhi_

tweeter

https://dzone.com/authors/abhirockzz
https://www.linkedin.com/in/abhirockzz/
https://x.com/abhi_tweeter
https://x.com/abhi_tweeter

PAGE 3TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

ORIGINAL RESEARCH

Key Research Findings
An Analysis of Results From DZone's 2024 Kubernetes Survey
G. Ryan Spain, Freelance Software Engineer, former Engineer & Editor at DZone

In 2014, Kubernetes' first commit was pushed to production. Fast forward 10 years, and it is now one of the most
prolific open-source systems in the software development space. So what is it about Kubernetes that has made it
so deeply entrenched within organizations? Scale, speed, delivery — these make up the Kubernetes promise, and
they’re not going anywhere any time soon.

DZone's research for our fifth annual Kubernetes in the Enterprise Trend Report explored the nuances and evolving
requirements for the now 10-year-old platform, including topics like architectural evolutions in Kubernetes, emerging
cloud security threats, advancements in Kubernetes monitoring and observability, the impact and influence of AI.
From May to September, DZone surveyed software developers, architects, and other IT professionals in order to gain
insight on the current state of Kubernetes in the software development space.

Methods
We created a survey and distributed it to a global audience of software professionals. Question formats included
mainly single and multiple choice, with options for write-in responses in some instances. The survey was disseminated
via email to DZone and TechnologyAdvice opt-in subscriber lists as well as promoted on DZone.com, in the DZone
Core Slack workspace, and across various DZone social media channels. The data for this report were gathered from
responses submitted between May 10, 2024, and September 10, 2024; we collected 139 complete and partial responses.

Note: Time-based comparative analysis throughout these findings will compare results gathered from the same survey — focused on
Kubernetes and cloud-native architectures — for DZone's Cloud Native Trend Report "Key Research Findings" and for these "Key Research
Findings." Responses for the Cloud Native Trend Report were submitted between March 25, 2024, and April 29, 2024.

Demographics
We've noted certain key audience details below in order to establish a more solid impression of the sample from
which results have been derived:

 • 24% of respondents described their primary role in their organization as "Technical Architect," 22% described
"Developer/Engineer," and 10% described "Developer Team Lead." No other role that we provided was selected by
more than 10% of respondents.*

 • 84% of respondents said they are currently developing "Web applications/Services (SaaS)," 44% said "Enterprise
business applications," and 25% said "Native mobile apps."

 • "Java" (72%) was the most popular language ecosystem used at respondents' companies, followed by "Python"
(64%), "JavaScript (client-side)" (59%), "Node.js (server-side JavaScript)" (48%), "Go" (37%), and "TypeScript" (32%).

 • Regarding responses on the primary language respondents use at work, the most popular was "Java" (42%),
followed by "Python" (21%), "Go" (9%), "C#" (7%), and "Node.js" (6%). No other language was selected by more than
5% of respondents.

 • On average, respondents said they have 18.08 years of experience as an IT professional, with a median of 18 years.
 • 27% of respondents work at organizations with < 100 employees, 24% of respondents work at organizations with

100-999 employees, and 47% of respondents work at organizations with 1,000+ employees.*

*Note: For brevity, throughout the rest of these findings we will use the term "developer" or "dev" to refer to anyone actively involved in the
creation and release of software, regardless of role or title. Additionally, we will define "small" organizations as having < 100 employees,
"mid-sized" organizations as having 100-999 employees, and "large" organizations as having 1,000+ employees.

Major Research Targets
In our 2024 Kubernetes survey, we aimed to gather data regarding various topics related to the following major
research targets:

1. Trends in Kubernetes and container management

2. Kubernetes' impact on other development trends

https://dzone.com/trendreports/cloud-native-4

PAGE 4TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

In this report, we review some of our key research findings. Many secondary findings of interest are not included here.

Research Target One: Trends in Kubernetes and Container Management
Kubernetes use has exploded in the past few years, and now the container orchestration tool is a mainstay in
contemporary software systems. We wanted to understand how organizations are currently using and managing this
popular technology, and how developers feel about the impact of Kubernetes on development and software quality.
In this section, we explore:

 • Containers and container management

 • Kubernetes use and use cases

 • Developer opinions of Kubernetes

 • Monitoring and observability

Containers
Containers have become a staple of modern software architectures because they enable applications to run
consistently across various environments, from local development to production, ensuring reliability and portability.
By isolating applications and their dependencies, containers reduce conflicts between different systems and make it
easier to test, deploy, and maintain software. They also offer a lightweight alternative to virtual machines, optimizing
resource usage and allowing for easier scaling and management of applications. In order to determine the current
state of container usage, we asked the following:

Does your organization use application containers in either development or production environments?

What tools/platforms does your organization use to manage containers in development and production
environments?

Results:

84%

12%

4%

Yes

No

I don't know

Figure 1. Container use in dev and prod environments [n=126]

2017 2018 2019 2020 20222021
0

20

40

60

80

100

70%

42%
45%

90% 88%

83%

2023 Q2* '24 Q3* '24

83% 84%88%

% of container use

Logarithmic (% of container use)
f(x) = 0.2279 ln(x) + 0.4236
R2 = 0.7716

*Q2 '24 = Cloud Native (Mar 25–Apr 29);
 Q3 '24 = Kubernetes (May 10–Sep 10)

Figure 2. Container use: 2017–2024 [n=100]

PAGE 5TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Tool

Development Production

Cloud Native
[n=179]

Kubernetes
[n=100]

%
Change

Cloud Native
[n=179]

Kubernetes
[n=100]

%
Change

Docker 71% 83% +12% 50% 64% +14%

Kubernetes 63% 75% +12% 58% 74% +16%

Docker Compose 42% 56% +14% 24% 29% +5%

Terraform 44% 54% +10% 42% 48% +6%

AWS EKS 37% 40% +3% 38% 44% +6%

Ansible 29% 36% +7% 24% 29% +5%

Azure AKS 34% 31% -3% 33% 29% -4%

AWS ECS 31% 28% -3% 31% 27% -4%

GKE 17% 19% +2% 15% 17% +2%

OpenShift 15% 17% +2% 18% 15% -3%

QEMU 7% 6% -1% 3% 1% -2%

Table 1. Container management tools in dev and prod: Cloud Native vs. Kubernetes Trend Reports*

*Only displays options selected by > 5% of respondents in either the Development or Production category

OBSERVATIONS
84% of respondents said that their organization uses containers in either development or production

environments. Since 2020 — the second of two years of rapid growth in response rates of organizations' container use
— between 83% and 90% of respondents have indicated that their organization uses containers in some capacity.
Since 2021, we have maintained the hypothesis that container adoption has plateaued after reaching a natural
saturation point, and our latest survey results support this hypothesis. Container use has been shown to be an
effective pattern for web-based and cloud-native software systems, which comprise the majority of enterprise
software today. As such, we believe that it will take a major shift in software architectures as a whole to cause a major
deviation from this current saturation point.

As we have seen for the past few years, respondents at small organizations were much less likely than those at
mid-sized and large organizations to say their organization uses containers. We mentioned in our 2024 Cloud Native
"Key Research Findings" that the lower rate of container
usage in small organizations may stem from lower
complexity software systems in those companies,
leading to lower benefit-cost ratios for containers, or
smaller companies lacking resources for container
adoption. Details on container usage segmented by
organization size for this report can be found in Table 2.

Once again, Docker was the most popular tool at
respondents' organizations for managing containers in
development, and Kubernetes was again the most
popular tool for container management in production.
Docker and Kubernetes saw significant increases in response rates for both development and production
environments, and Docker Compose, Terraform, and Ansible saw significant increases in response rates for
development environments only.

There was no significant change in most third-party container management tools, especially those linked to top
cloud platforms like AWS and Azure, and Docker and Kubernetes use in development environments have returned
to rates we observed in our 2023 Kubernetes in the Enterprise Trend Report (81% and 71%, respectively). Even so, we
believe that the use of third-party container management tools will catch up to Docker and Kubernetes in the next
few years as we hypothesized in our 2024 Cloud Native "Key Research Findings."

Response

Organization Size

Overall1-99 100-999 1,000+

Yes 71% 100% 85% 75%

No 26% 0% 13% 19%

I don't know 3% 0% 2% 6%

n= 31 28 55 126

Table 2. Container use by organization size*

*% of columns

https://dzone.com/trendreports/kubernetes-in-the-enterprise-2

PAGE 6TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Kubernetes Use and Use Cases
Kubernetes offers powerful container orchestration by automating the deployment, scaling, and management of
containerized applications across clusters, ensuring high availability and fault tolerance. It simplifies operational tasks
like load balancing, service discovery, and resource optimization, making it easier to manage complex microservices
architectures. We saw in the previous section that Kubernetes is — and has been — the most used container
management technology in production environments, second only to Docker in development environments.

To find out more about developers' experience with Kubernetes and how their organizations are using Kubernetes,
we asked the following:

Have you personally worked with Kubernetes?

Does your organization run any Kubernetes clusters?

To respondents who said their organization runs Kubernetes clusters, we also asked:

What use cases does your organization deploy Kubernetes into?

Results:

76%

24%

Yes

No

Figure 3. Personal experience with Kubernetes [n=123]

75%

20%

6%

Yes

No

I don't know

Figure 4. Organizations running Kubernetes clusters [n=126]

SEE FIGURE 5 ON NEXT PAGE

PAGE 7TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

0

10

20

30

40

50

60

Hybrid/-
multi-cloud

Air-
gapped

Fast data
pipelines

AI/ML Edge/IoT New
cloud-native

apps

Lift and shift
existing

apps

Modernize
existing

apps

I don’t
know

Other,
write in

54%

12%
16%

32%

12%

49%

33%

46%

1% 1%

Figure 5. Kubernetes use cases [n=90]

OBSERVATIONS
76% of respondents indicated that they have personally worked with Kubernetes, showing no significant change

from our 2023 Kubernetes research findings (77%) or our 2024 cloud native research findings (79%). As we mentioned
in our Cloud Native Trend Report, we do not anticipate
seeing large changes in response rates regarding developers'
personal Kubernetes use for at least two to three years.

Three-quarters of respondents (75%) said their
organization runs Kubernetes clusters, and 79% of
respondents either said their organization runs Kubernetes
clusters or said their organization uses Kubernetes in either
development or production environments when asked
about container management tools at their organization
(which we examined in the previous section).

These response rates align more closely with
those we observed in our 2023 Kubernetes Trend
Report, where 80% of respondents said their
organizations ran Kubernetes clusters, compared
to those we saw in our 2024 Cloud Native Trend
Report, where 68% of respondents said their
organizations ran Kubernetes clusters.

Respondents at small organizations were
significantly less likely to say that their
organization runs Kubernetes clusters than those
at mid-sized or large organizations, with the latter
having equal response rates. However,
respondents at large organizations were much
more likely to say they had personal experience
with Kubernetes than others, whereas
respondents at small and mid-sized organizations
had no significant difference in response rates
regarding personal Kubernetes experience (more
details in Table 3).

Response

Organization Size

Overall1-99 100-999 1,000+

Organization 53% 85% 85% 75%

Personal 65% 68% 89% 76%

n= 32 28 55 115

Table 3. Organizational and personal Kubernetes
use segmented by organization size*

*% of columns

Use Case

Trend Report
%

ChangeCloud Native Kubernetes

Hybrid/multi-cloud 44% 54% +11%

New cloud-native apps 65% 49% -16%

Modernizing existing apps 53% 46% -8%

Lift and shift existing apps 34% 33% -1%

AI/ML 24% 32% +8%

Fast data pipelines 19% 16% -4%

Edge/IoT 19% 12% -7%

Air-gapped 12% 12% 0%

Non-ML AI 13% 8% -5%

I don't know 3% 1% -2%

Other, write in 1% 1% 0%

n= 144 90 -

Table 4. Kubernetes use cases: Cloud Native vs. Kubernetes reports

PAGE 8TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

"Hybrid/multi-cloud" was the most commonly selected use case for Kubernetes after a significant increase from
our 2024 cloud native findings, returning to a rate aligned with results from our 2023 Kubernetes findings (52%). We
also noticed a significant decrease in response rates for "New cloud-native apps" and "Modernizing existing apps"
from our 2024 cloud native findings, with "New cloud-native apps" even falling significantly below the response rates
we saw in our 2023 Kubernetes findings (58%). Further details can be found in Table 4 on the previous page.

Developer Opinions of Kubernetes
Adopting Kubernetes can offer several advantages — automating the management of containerized applications,
improving scalability, ensuring high availability and fault tolerance, and more. It simplifies complex tasks like load
balancing, service discovery, and rolling updates, making it ideal for managing microservices architectures. On the
other hand, Kubernetes' potentially steep learning curve and complexity can be a significant disadvantage, especially
for smaller teams or those unfamiliar with container orchestration.

Developers may face challenges with initial setup, configuration, and ongoing management, as well as troubleshooting
issues in large-scale deployments, which can become time consuming and resource intensive. To understand more
about the advantages, disadvantages, and pain points developers have experienced when encountering Kubernetes
in their organizations, we asked the following:

What has Kubernetes improved at your organization?

What has Kubernetes worsened at your organization?

What pain points has your organization encountered while working with Kubernetes?

Results:

0 10 20 30 40 50 60 70 80 90 100

36% 51% 12%

30% 3% 42% 25%

48% 42% 9%

35% 55% 9%

22% 6% 58% 13%

52% 7% 39% 2%

25% 9% 52% 15%

61% 9% 25% 6%

58% 13% 22% 6%

53% 7% 38% 2%CI/CD

Deployment in general

Autoscaling

Architectural refactoring

Building microservices

Application modularity

Reliability

Cost

Overall system design

Security

Improved Both WorsenedNeither Unlabeled = 1%

Figure 6. What Kubernetes has improved vs. worsened [n=89]

SEE FIGURE 7 ON NEXT PAGE

PAGE 9TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

0 10 20 30 40 50 60

3%

42%

33%

42%

35%

57%

49%

40%Learning or using kubectl

Maintaining YAML files

Performance tuning

Other, write in

CLI tooling with microservices

Learning or using Helm

Maintaining a mental model of what
is actually happening at runtime

Security

Figure 7. Kubernetes pain points [n=88]

OBSERVATIONS
More than half of respondents reported that Kubernetes improved "Autoscaling," "Deployment in general," "CI/CD,"

and "Building microservices," and nearly half claimed that "Reliability" was improved. Furthermore, more than three-
quarters of respondents (78%) selected three or more of the 10 improvement options provided, and more than half of
respondents (54%) selected five or more.

No option received more respondents saying that it was worsened by Kubernetes than respondents saying it was
improved, but "Cost" came closest, with only a 5% difference in response rates between the two. "Architectural
refactoring" and "Security" had fewer respondents saying that these were improved by Kubernetes than respondents
reporting "Cost," but they also had fewer respondents saying those aspects were worsened. Fewer than half of
respondents (42%) selected more than one factor that was worsened by Kubernetes adoption at their organization,
and fewer than one in six respondents (16%) selected three or more.

"Autoscaling," "CI/CD," and "Application modularity" all saw significantly fewer respondents indicating that these
factors were improved by Kubernetes adoption than our 2024 cloud native research findings, and "Overall system
design" saw significantly more. Details on the time-based data analysis can be found in Table 5:

Factor

Improved Worsened Both Neither

CN K8s % Change CN K8s % Change CN K8s % Change CN K8s % Change

Autoscaling 73% 61% -13% 3% 6% +3% 4% 9% +5% 20% 25% +5%

Deployment in general 56% 58% +2% 6% 6% 0% 15% 13% -2% 23% 22% 0%

CI/CD 61% 53% -8% 1% 2% +1% 10% 7% -3% 28% 38% +10%

Building microservices 51% 52% +1% 3% 2% -1% 8% 7% -2% 38% 39% +1%

Reliability 51% 48% -2% 4% 9% +5% 7% 1% -6% 38% 42% +4%

Overall system design 27% 36% +9% 17% 12% -5% 1% 1% 0% 55% 51% -4%

App modularity 46% 35% -12% 4% 9% +5% 3% 1% -2% 46% 55% +9%

Cost 24% 30% +6% 31% 25% -6% 8% 3% -5% 37% 42% +5%

Architectural refactoring 31% 25% -6% 20% 15% -5% 3% 9% +6% 46% 52% +5%

Security 27% 22% -4% 17% 13% -3% 7% 6% -1% 49% 58% +9%

Other, write in 0% 0% 0% 11% 9% -2% 1% 0% -1% 87% 91% +4%

Table 5. What Kubernetes has improved vs. worsened: Cloud Native vs. Kubernetes Trend Reports (CN vs. K8s)

PAGE 10TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

"Performance tuning" and "Maintaining
YAML files" were the most commonly selected
Kubernetes pain points, though all listed pain
points were selected by at least one-third of
respondents. The response rate for "CLI tooling
with microservices" increased significantly
since the 2024 Cloud Native Trend Report,
while "Maintaining a mental model of what is
actually happening at runtime" saw a
significant decrease (details in Table 6).

Overall, most pain points that developers
encounter while working with Kubernetes
are not diminishing quickly, though these
pain points may be alleviated as more
organizations begin to utilize third-party
cloud platform tools that manage more of
the "difficult" aspects of Kubernetes.

Monitoring and Observability
Monitoring and observability are critical for cloud-native and containerized applications, especially those running on
Kubernetes, because they provide real-time insights into application performance, health, and resource utilization.
With the dynamic and distributed nature of containerized environments, it's essential to track metrics, logs, and
traces to detect issues, prevent downtime, and ensure scalability. While Kubernetes automatically manages and
orchestrates multiple containers, without proper observability, identifying the root cause of performance bottlenecks,
failures, or misconfigurations can be challenging.

Effective monitoring helps optimize resource use, improve reliability, and maintain seamless operations in complex,
microservices-based architectures. To find out more about how developers and organizations are implementing
monitoring and observability in their containerized applications, and the impact of Kubernetes use on monitoring
decisions, we asked the following:

Do you use any tools to monitor Kubernetes?

Which of the following tools does your organization use for monitoring and/or observability of cloud-native
or containerized applications?

In what ways has your organization adopted AI for monitoring and/or observability?

Results:

69%

21%

10%

Yes

No

I don't know

Figure 8. Respondents using tools to monitor Kubernetes [n=86]

SEE FIGURES 9-10 ON NEXT PAGE

Pain Point

Cloud Native Kubernetes
%

Change% n= % n=

Performance tuning 53% 73 57% 50 +4%

Maintaining YAML files 52% 72 49% 43 -3%

Learning or using Helm 40% 56 42% 37 +2%

Security 47% 66 42% 37 -5%

Learning or using kubectl 39% 54 40% 35 +1%

CLI tooling with
microservices

26% 36 35% 31 +9%

Maintaining a mental
model of what is actually
happening at runtime

41% 57 33% 29 -8%

Other, write in 4% 6 3% 3 -1%

Table 6. Kubernetes pain points: CN vs. K8s Trend Reports

PAGE 11TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

0 10 20 30 40 50 60 70

8%

6%

9%

7%

4%

24%

7%

2%

3%

62%

5%

65%

15%

21%

11%

16%AppDynamics

cAdvisor

Datadog

Dynatrace

Sensu

Instana

Prometheus

Sematext

Grafana

SolarWinds

Splunk

Sumo Logic

Sysdig

Other, write in

I don't know

Not applicable

Figure 9. Monitoring/observability tools for cloud-native and containerized apps [n=114]

10

0

20

40

50

30

Historical
analysis

Anomaly
detection

Performance
analysis

Causality
determination

Correlation and
contextualization

Not
applicable

Other,
write in

26%

37% 36%

17%
14%

1%

44%

Figure 10. Adoption of AI for monitoring/observability [n=117]

OBSERVATIONS
More than two-thirds of respondents said they use tools for monitoring Kubernetes. When respondents were

asked to write in the tools they used for monitoring Kubernetes, 40% said they use "Prometheus," 30% said they use
"Grafana," and 10% said they use an Azure monitoring tool.

"Grafana" and "Prometheus" were also the most frequently selected tools for monitoring and observability of
cloud-native or containerized apps by far. "Splunk," "Datadog," "AppDynamics," "Dynatrace," and "cAdvisor" were all
selected by more than 10% of respondents. Additionally, respondents at organizations using Kubernetes were
significantly more likely to use several of the listed tools, including "Grafana," "Prometheus," "Datadog," and

PAGE 12TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

"AppDynamics" than those at organizations not using
Kubernetes (details in Table 7).

The majority of respondents (56%) selected one or
more ways in which their organization uses AI for
monitoring and observability, the most common ways
being "Anomaly detection" and "Performance analysis."
Respondents at organizations using Kubernetes were
significantly more likely than those at organizations not
using Kubernetes to use AI for "Anomaly detection,"
"Historical analysis," and "Causality determination"
(details in Table 8).

Respondents at large organizations were significantly
more likely than those at small or mid-sized
organizations to indicate that their companies use AI
for monitoring and observability, especially for "Anomaly
detection" and "Performance analysis." Respondents at
small organizations were significantly less likely than
others to say that their organization uses AI for
"Historical analysis," "Causality determination," and
"Correlation and contextualization" (details in Table 9).

Research Target Two: Kubernetes
Impact on Other Development Trends
Software development involves countless interconnected
systems, tools, and practices, and adding Kubernetes'
technology stack has the potential to impact — and be
impacted by — these systems, tools, and practices. We
wanted to learn how organizations are using Kubernetes
alongside other common trends and practices in the
contemporary development landscape; in this section, we
explore the following topics in relation to Kubernetes use:

 • Cost optimization techniques

 • Security

 • Microservices

Cost Optimization Techniques
Cost optimization is essential in software development
to ensure efficient use of resources and to maximize
return on investment, especially in cloud environments
where expenses can scale quickly. Kubernetes can play

a pivotal role in cost optimization by automating resource allocation, scaling applications based on demand, and
efficiently distributing workloads across nodes. Its ability to dynamically scale resources up or down helps reduce

*% of columns; only displays options selected by > 5% of respondents

Tool

Kubernetes Use

OverallYes No

Grafana 76% 26% 65%

Prometheus 72% 22% 62%

Splunk 25% 22% 24%

Datadog 26% 0% 21%

AppDynamics 18% 9% 16%

Dynatrace 17% 4% 15%

cAdvisor 14% 4% 11%

Other, write in 6% 17% 9%

Not applicable 2% 26% 8%

SolarWinds 8% 4% 7%

Sysdig 9% 0% 7%

I don't know 2% 13% 6%

n= 87 23 117

Table 7. Monitoring/observability tools for cloud-native and
containerized apps by Kubernetes use*

*% of columns

Use Case

Kubernetes Use

OverallYes No

Anomaly detection 41% 19% 37%

Performance analysis 36% 33% 36%

Historical analysis 28% 19% 26%

Causality
determination

21% 5% 17%

Correlation and
contextualization

15% 10% 14%

Other, write-in 1% 0% 1%

Not applicable 42% 52% 44%

n= 86 21 114

Table 8. AI uses for monitoring/observability
by organization Kubernetes use*

*% of columns

Use Case

Organization Size

Overall1-99 100-999 1,000+

Historical
analysis

17% 29% 31% 26%

Anomaly
detection

23% 32% 48% 37%

Performance
analysis

30% 25% 46% 36%

Causality
determination

3% 18% 25% 17%

Correlation and
contextualization

7% 14% 19% 15%

Other, write-in 0% 0% 2% 1%

Not applicable 57% 57% 27% 43%

n= 30 28 52 110

Table 9. AI uses for monitoring/observability
by organization size*

PAGE 13TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

overprovisioning, while features like auto-scaling and efficient bin-packing optimize infrastructure utilization. By
managing resources more effectively, Kubernetes helps organizations control costs while maintaining performance
and scalability. We wanted to know the types of cost optimization techniques organizations are using and how
Kubernetes use relates to those techniques, so we asked:

Which of the following practices and techniques does your organization use to manage and optimize costs?

Results:

0 20 40 60 70503010

4%

2%

35%

42%

59%

59%

27%

33%

40%

41%

61%

62%

56%

65%Automation of manual processes

Cloud optimization

Containerization

CI/CD

Other, write in

Security integration

Resource optimization

Monitoring and analytics

Infrastructure as Code

Implementation of feedback loops

Failover and disaster recovery

Culture of collaboration and communication

Cross-functional teams

Not applicable

Figure 11. Techniques for managing and optimizing costs [n=117]

OBSERVATIONS
"Automation of manual processes," "Containerization,"

and "Continuous integration and continuous delivery
(CI/CD)" were the most commonly selected cost
optimization techniques. 92% of respondents selected at
least two of the 12 listed techniques, and more than half
of respondents (54%) selected five or more techniques.
Since the 2024 Cloud Native Trend Report, the only
significant changes in response rates were a decrease in
the response rate for "Monitoring and analytics" (down
7% from 67%) and an increase in the response rate for
"Cross-functional teams" (up 9% from 34%).

Respondents at organizations running Kubernetes
clusters were generally more likely to select each cost
management technique. "Cloud optimization,"
"Infrastructure as Code (IaC)," "Containerization," and
"Resource optimization" were all at least 30% more
likely to be selected by respondents at organizations
using Kubernetes than those at organizations not using
Kubernetes. The only technique chosen more often by
respondents at organizations not using Kubernetes
was "Culture of collaboration and communication."
Further details are available in Table 10.

*% of columns

Technique

Kubernetes Use

OverallYes No

Automation of manual
processes

69% 52% 65%

Containerization 70% 35% 62%

CI/CD 63% 57% 61%

Infrastructure as Code 67% 30% 59%

Monitoring and analytics 66% 43% 59%

Cloud optimization 64% 26% 56%

Resource optimization 48% 17% 42%

Cross-functional teams 43% 39% 41%

Culture of collaboration and
communication

40% 48% 40%

Security integration 38% 26% 35%

Failover and disaster recovery 34% 26% 33%

Implementation of
feedback loops

31% 17% 27%

Not applicable 2% 4% 4%

Table 10. Techniques for managing and optimizing
costs by organization Kubernetes use*

PAGE 14TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Security
Kubernetes security is crucial as it protects containerized applications and infrastructure from vulnerabilities,
unauthorized access, and potential attacks in a highly dynamic and interconnected environment. With Kubernetes
managing critical workloads and sensitive data, securing the platform involves hardening cluster configurations,
managing access controls, and ensuring secure communication between microservices. Proper security practices,
such as implementing network policies, securing container images, and regularly updating Kubernetes components,
help prevent breaches and data leaks. To determine how organizations are handling their Kubernetes security, we
asked the following:

Which of the following security-related measures does your organization take with regard to Kubernetes?

In the past year, has your organization needed to reassess any planned container and/or Kubernetes
deployments to production due to security concerns?

Results:

0 10 20 30 40 50 60 70

Blocking or limiting network access to exposed ports

Implementing external authentication for Kubernetes API

Implementing built-in authentication for Kubernetes API

Restricting access to Kubelets

Using the ImagePolicyWebhook admission controller

Continuously scanning for new vulnerabilities

Continuously assessing container privileges

Applying security context to pods and containers

Using a service mesh

Implementing centralized policy management

Limiting cluster resource usage

Using network policies to control traffic between pods and clusters

Sandboxing containers

Preventing containers from loading unwanted kernel modules

I don't know

Not applicable

Regularly updating Kubernetes

Restricting etcd access

Enabling role-based access control

Using namespaces to isolate resources

3%

5%

15%

17%

26%

34%

22%

28%

44%

20%

34%

7%

45%

24%

52%

21%

30%

53%

40%

67%

Figure 12. Kubernetes security measures [n=86]

55%

20%
25%

Yes

No

I don't know

Figure 13. Kubernetes prod deployment reassessments due to security concerns [n=101]

PAGE 15TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

OBSERVATIONS
More than half of respondents (62%) selected five or more security measures out of the 18 we provided, and 87%

selected two or more. The most commonly selected measures were "Regularly updating Kubernetes," "Blocking or
limiting network access to exposed ports," and "Enabling role-based access control (RBAC)." The only significant
changes from the 2024 Cloud Native Trend Report were decreases in response rates for "Continuously scanning for
new vulnerabilities" (down 9% from 44%), "Using network policies for controlling traffic between pods and clusters"
(down 7% from 32%), and "Continuously assessing container privileges" (down 13% from 32%).

25% of respondents reported that their organization has
needed to reassess a container/Kubernetes deployment
because of security concerns in the last year, down significantly
from 32% in the 2024 Cloud Native report. Respondents at
small organizations were considerably more likely to indicate
that their organization had not needed to perform such a
reassessment in the last year than those at mid-sized
organizations, who, in turn, were more likely than those at large
organizations to say that a Kubernetes security-related
deployment reassessment was not needed (details in Table 11).

Microservices
Running microservices on Kubernetes can offer significant advantages, including improved scalability, reliability, and
simplified management of complex applications. Kubernetes automates the deployment, scaling, and monitoring
of microservices, ensuring each service runs independently and can be updated, scaled, or restarted without
affecting others. Its built-in service discovery, load balancing, and self-healing capabilities enhance the resilience
and performance of microservices architectures. To discover more about how many organizations are running
microservices on Kubernetes, we asked:

Does your organization run any microservices?

And to respondents who answered "Yes" to that question, we asked:

Are any of these microservices deployed on Kubernetes clusters?

Results:

87%

8%

5%

Microservices Use

Yes

No

I don't know

95%

4% 1%

Microservices Running on Kubernetes

Figure 14. Microservices use and microservices running on Kubernetes [n=121; n=80]

OBSERVATIONS
A large majority of respondents said that their organization uses microservices, and almost all respondents at

organizations running microservices indicated that those microservices are deployed on Kubernetes clusters. There
were no significant changes to the results of either question since our 2024 Cloud Native Trend Report, supporting the

Org Size

Kubernetes Reassessment

Yes No I don't know n=

1-99 29% 71% 0% 21

100-999 30% 56% 15% 27

1,000+ 22% 46% 32% 50

Overall 26% 54% 20% 98

Table 11. Kubernetes prod deployment reassessments
due to security concerns by organization size*

*% of rows

PAGE 16TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

hypothesis we wrote in that report's "Key Research Findings" — that microservices adoption has reached a saturation
point. As we said in those findings, "Unless a new paradigm emerges to disrupt microservices' popularity in modern
software architectures, it seems likely that microservices' usage rate will remain roughly the same for years to come."

Respondents at small organizations were significantly less likely than others to say that their organization uses
microservices, but organization size had no impact on whether respondents at organizations running microservices
reported that those microservices are deployed on Kubernetes clusters. Details are available in Table 12:

*% of rows

Organization Size

Microservices Use Microservices Running on Kubernetes

Yes No I don't know n= Yes No I don't know n=

1-99 81% 16% 3% 31 93% 0% 7% 15

100-999 93% 7% 0% 28 95% 0% 5% 20

1,000+ 91% 4% 5% 55 95% 2% 2% 44

Overall 87% 8% 5% 121 95% 1% 4% 80

Table 12. Microservices use and microservices running on Kubernetes by organization size*

Future Research
Our analysis here only touched the surface of the available data, and we will look to refine and expand our Kubernetes
survey as we produce further Trend Reports. Some of the topics we didn't get to in this report, but were incorporated
in our survey, include:

 • Kubernetes workloads

 • Serverless tools

 • Kubernetes autoscalers

 • Technical debt and legacy code

 • AI for release management

 • Types of cloud infrastructure

Please contact publications@dzone.com if you would like to discuss any of our findings or supplementary data.

G. Ryan Spain lives on a beautiful two-acre farm in McCalla, Alabama with his lovely
wife. He is a polyglot software engineer with an MFA in poetry, a die-hard Emacs
fan and Linux user, a lover of The Legend of Zelda, a journeyman data scientist, and
a home cooking enthusiast. When he isn't programming, he can often be found
watching Make Some Noise on Dropout with a glass of red wine or a cold beer.

G. Ryan Spain

@grspain
@grspain
@grspain
gryanspain.com

mailto:publications%40dzone.com?subject=Trend%20Report%20research%20inquiry
https://dzone.com/users/1287915/grspain.html
https://github.com/grspain
https://gitlab.com/grspain
http://gryanspain.com

PAGE 17TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

PARTNER CASE STUDY

Porter
Leading Logistics Innovator Optimizes
Containers and Costs

CREATED IN PARTNERSHIP WITH

Founded in 2014, Porter is a leading end-to-end logistics company providing
a spectrum of intracity and intercity delivery services in India. Porter has
serviced over 8 million customers across more than 20 cities in India. Porter has
disrupted various domains of logistics by launching an on-demand marketplace
and an online delivery app, which is built within a cloud-native framework on
Amazon Web Services (AWS) ECS.

Challenge
Porter faced a dual challenge: a very lean DevOps team and soaring cloud
costs. Although the company's six-person cloud infrastructure team engaged
in various cost management activities, its use of cloud-provider tools and
custom scripts only addressed a portion of their consumption, and 70% of their
compute usage consisted of expensive on-demand instances. They also lacked
the correct tooling for forecasting usage, which led to wasteful overprovisioning
to ensure optimal performance.

Alongside cost issues, the team was juggling multiple responsibilities
maintaining all production systems and internal platforms, which prevented
them from delivering desired platform improvements. Due to constraints in
personnel, time, and resources, achieving innovation was challenging.

Solution
Porter saw an opportunity to streamline their operations and reduce costs using
Spot by NetApp's Ocean, a comprehensive solution for scale-up enterprises
seeking to automate and optimize Kubernetes, ECS, and EKS infrastructures.
Spot Ocean's automated, application-driven provisioning and scaling of
compute resources, coupled with Virtual Node Groups that allow multiple node
types to be managed on a single cluster, helped the Porter team eliminate the
complexity of their infrastructure and drastically reduce manual maintenance.

The team was also able to improve efficiency by reducing infrastructure waste
using Ocean's automated infrastructure optimization capabilities, such as bin-
packing, scaledown, and rightsizing. And crucially, Spot Ocean empowered
the team to run 100% of production workloads on low-cost Spot Instances,
confident that its ML-driven automation would prevent downtime during
market interruptions.

Results
With continuous optimization and intelligent automation of their ECS
infrastructure provided by Spot Ocean, Porter was able to:

 • Reduce cloud costs by up to 20% with automated infrastructure
optimization, including bin-packing and application-driven scaling

 • Run 100% of its production environment on EC2 Spot Instances
without risk of interruption

 • Move from reactive infrastructure management to proactive cost and
performance optimization

Porter
Logistics

2,600 employees
Bengaluru, India

Solutions Used
Amazon ECS,

Spot Ocean

Primary Outcomes
Porter was able to move

100% of its production
ECS workloads to

AWS Spot Instances,
saving up to 20% on

their cloud costs.

We never thought we'd
move 100% of production
to spot instances.… With

Ocean, we saw that even
if interruptions did happen,
our uptime was intact. This
qualified for migrating our

production clusters as well.

—Jijo T. Joy,
Senior DevOps Engineer,

Porter

Read the full case study here.

https://spot.io/case-studies/porter-optimizes-containers-and-costs-with-spot-by-netapp/

Eliminate complexity, maximize efficiency and reduce costs
with automated, continuous optimization for containerized
applications across all clouds.

Get started today at spot.io/ocean

Effortlessly deliver cost-optimized
Kubernetes infrastructure at scale

Maximize cost savings
Automatically provision the optimal mix of
instance types and pricing options to precisely
meet application needs

See and understand usage
Get real-time detailed insights into
containers costs, enabling data-driven
decisions and better management
of budget

Automate container
infrastructure management
Application-aware, AI/ML-driven
controller continuously manages the
scaling and sizing of compute resources

https://spot.io/product/ocean/?utm_campaign=clps-kub-spot-all-ww-webc-pdf-dzonek8trendreportad-1723454563216&utm_source=dzone&utm_medium=display&utm_content=graphic

PAGE 19TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

CONTRIBUTOR INSIGHTS

A decade ago, Google introduced Kubernetes to simplify the management of containerized applications. Since then,
it has fundamentally transformed the software development and operations landscape. Today, Kubernetes has seen
numerous enhancements and integrations, becoming the de facto standard for container orchestration. This article
explores the journey of Kubernetes over the past 10 years, its impact on the software development lifecycle (SDLC)
and developers, and the trends and innovations that will shape its next decade.

The Evolution of Kubernetes
Kubernetes, often referred to as K8s, had its first commit pushed to GitHub on June 6, 2014. About a year later, on
July 21, 2015, Kubernetes V1 was released, featuring 14,000 commits from 400 contributors. Simultaneously, the Linux
Foundation announced the formation of the Cloud Native Computing Foundation (CNCF) to advance state-of-the-art
technologies for building cloud-native applications and services. After that, Google donated Kubernetes to the CNCF,
marking a significant milestone in its development.

Kubernetes addressed a critical need in the software industry: managing the lifecycle of containerized applications.
Before Kubernetes, developers struggled with orchestrating containers, leading to inefficiencies and complexities
in deployment processes. Kubernetes brought advanced container management functionality and quickly gained
popularity due to its robust capabilities in automating the deployment, scaling, and operations of containers.

While early versions of Kubernetes introduced the foundation for container orchestration, the project has since
undergone significant improvements. Major updates have introduced sophisticated features such as StatefulSets
for managing stateful applications, advanced networking capabilities, and enhanced security measures. The
introduction of Custom Resource Definitions (CRDs) and Operators has further extended its functionality, allowing
users to manage complex applications and workflows with greater ease.

In addition, the community has grown significantly over the past decade. According to the 2023 Project Journey
Report, Kubernetes now has over 74,680 contributors, making it the second-largest open-source project in the world
after Linux. Over the years, Kubernetes has seen numerous enhancements and integrations, becoming the de facto
standard for container orchestration. The active open source community and the extensive ecosystem of tools and
projects have made Kubernetes an essential technology for modern software development. It is now the "primary
container orchestration tool for 71% of Fortune 100 companies" (Project Journey Report).

Kubernetes' Impact on the SDLC and Developers
Kubernetes abstracts away the complexities of container orchestration and allows developers to focus on
development rather than worry about application deployment and orchestration. The benefits and key impacts on
the SDLC and developer workflows include enhanced development and testing, efficient deployment, operational
efficiency, improved security, and support for microservices architecture.

Enhanced Development and Testing
Kubernetes ensures consistency for applications running across testing, development, and production environments,
regardless of whether the infrastructure is on-premises, cloud based, or a hybrid setup. This level of consistency,
along with the capability to quickly spin up and tear down environments, significantly accelerates development
cycles. By promoting portability, Kubernetes also helps enterprises avoid vendor lock-in and refine their cloud
strategies, leading to a more flexible and efficient development process.

Efficient Deployment
Kubernetes automates numerous aspects of application deployment, such as service discovery, load balancing,
scaling, and self-healing. This automation reduces manual effort, minimizes human error, and ensures reliable and
repeatable deployments, reducing downtime and deployment failures.

A Decade of Excellence
The Journey, Impact, and Future of Kubernetes
By Maryam Tavakkoli, Senior Cloud Engineer at Relex Solutions

https://github.com/kubernetes/kubernetes/commit/2c4b3a562ce34cddc3f8218a2c4d11c7310e6d56
https://cloudplatform.googleblog.com/2015/07/Kubernetes-V1-Released.html
https://www.cncf.io/announcements/2015/06/21/new-cloud-native-computing-foundation-to-drive-alignment-among-container-technologies/
https://www.cncf.io/announcements/2015/06/21/new-cloud-native-computing-foundation-to-drive-alignment-among-container-technologies/
https://www.cncf.io/
https://kubernetes.io/blog/2016/12/statefulset-run-scale-stateful-applications-in-kubernetes/
https://kubernetes.io/blog/2019/09/18/kubernetes-1-16-release-announcement/
https://www.cncf.io/reports/kubernetes-project-journey-report/
https://www.cncf.io/reports/kubernetes-project-journey-report/
https://dzone.com/articles/kubernetes-beyond-container-orchestration
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do

PAGE 20TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Operational Efficiency
Kubernetes efficiently manages resources by dynamically allocating them based on the application's needs. It
ensures operations remain cost effective while maintaining optimal performance and use of computing resources by
scheduling containers based on resource requirements and availability.

Security
Kubernetes enhances security by providing container isolation and managing permissions. Its built-in security
features allow developers to build secure applications without deep security expertise. Such built-in features include
role-based access control, which ensures that only authorized users can access specific resources and perform
certain actions. It also supports secrets management to securely store and manage sensitive information like
passwords and API keys.

Microservices Architecture
Kubernetes has facilitated the adoption of microservices architecture by enabling developers to deploy, manage,
and scale individual microservices independently. Each microservice can be packaged into a separate container,
providing isolation and ensuring that dependencies are managed within the container. Kubernetes' service discovery
and load balancing features enable communication between microservices, while its support for automated scaling
and self-healing ensures high availability and resilience.

Predictions for the Next Decade
After a decade, it has become clear that Kubernetes is now the standard technology for container orchestration
that's used by many enterprises. According to the CNCF Annual Survey 2023, the usage of Kubernetes continues
to grow, with significant adoption across different industries and use cases. Its reliability and flexibility make it a
preferred choice for mission-critical applications, including databases, CI/CD pipelines, and AI and machine learning
(ML) workloads. As a result, there is a growing demand for new features and enhancements, as well as simplifying
concepts for users. The community is now prioritizing improvements that not only enhance user experiences but also
promote the sustainability of the project. Figure 1 illustrates the anticipated future trends in Kubernetes, and below
are the trends and innovations expected to shape Kubernetes' future in more detail.

Figure 1. Future trends in Kubernetes

AI and Machine Learning
Kubernetes is increasingly used to orchestrate AI and ML workloads, supporting the deployment and management
of complex ML pipelines. This simplifies the integration and scaling of AI applications across various environments.
Innovations such as Kubeflow — an open-source platform designed to optimize the deployment, orchestration, and
management of ML workflows on Kubernetes — enable data scientists to focus more on model development and
less on infrastructure concerns.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://github.com/kubeflow/

PAGE 21TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

According to the recent CNCF open-source project velocity report, Kubeflow appeared on the top 30 CNCF project list
for the first time in 2023, highlighting its growing importance in the ecosystem. Addressing the resource-intensive
demands of AI introduces new challenges that contributors are focusing on, shaping the future of Kubernetes in the
realm of AI and ML.

The Developer Experience
As Kubernetes evolves, its complexity can create challenges for new users. Hence, improving the user experience
is crucial moving forward. Tools like Backstage are revolutionizing how developers work with Kubernetes and
speeding up the development process. The CNCF's open-source project velocity report also states that "Backstage is
addressing a significant pain point around developer experience."

Moreover, the importance of platform engineering is increasingly recognized by companies. This emerging trend
is expected to grow, with the goal of reducing the learning curve and making it easier for developers to adopt
Kubernetes, thereby accelerating the development process and improving productivity.

CI/CD and GitOps
Kubernetes is revolutionizing continuous integration and continuous deployment (CI/CD) pipelines through the
adoption of GitOps practices. GitOps uses Git repositories as the source of truth for declarative infrastructure and
applications, enabling automated deployments. Tools like ArgoCD and Flux are being widely adopted to simplify
the deployment process, reduce human error, and ensure consistency across environments. Figure 2 shows the
integration between a GitOps operator, such as ArgoCD, and Kubernetes for managing deployments. This trend is
expected to grow, making CI/CD pipelines more robust and efficient.

Figure 2. Kubernetes GitOps

Sustainability and Efficiency
Cloud computing's carbon footprint now exceeds the airline industry, making sustainability and operational
efficiency crucial in Kubernetes deployments. The Kubernetes community is actively developing features to optimize
resource usage, reduce energy consumption, and enhance the overall efficiency of Kubernetes clusters.

CNCF projects like KEDA (Kubernetes event-driven autoscaling) and Karpenter (just-in-time nodes for any
Kubernetes cluster) are at the forefront of this effort. These tools not only contribute to cost savings but also align
with global sustainability goals.

https://www.cncf.io/blog/2024/07/11/as-we-reach-mid-year-2024-a-look-at-cncf-linux-foundation-and-top-30-open-source-project-velocity/
https://kubernetes.io/blog/2024/06/06/10-years-of-kubernetes/
https://kubernetes.io/blog/2024/06/06/10-years-of-kubernetes/
https://github.com/backstage/backstage#getting-started
https://argo-cd.readthedocs.io/en/stable/
https://fluxcd.io/flux/
https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-the-cloud/
https://github.com/kedacore/keda
https://github.com/aws/karpenter-provider-aws

PAGE 22TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Hybrid and Multi-Cloud Deployments
According to the CNCF Annual Survey 2023, multi-cloud solutions are now the norm: Multi-cloud solutions (hybrid
and other cloud combinations) are used by 56% of organizations. Deploying applications across hybrid and multi-
cloud environments is one of Kubernetes' most significant advantages. This flexibility enables organizations to avoid
vendor lock-in, optimize costs, and enhance resilience by distributing workloads across multiple cloud providers.

Future developments in Kubernetes will focus on improving and simplifying management across different cloud
platforms, making hybrid and multi-cloud deployments even more efficient.

Increased Security Features
Security continues to be a top priority for Kubernetes deployments. The community is actively enhancing security
features to address vulnerabilities and emerging threats. These efforts include improvements to network policies,
stronger identity and access management (IAM), and more advanced encryption mechanisms. For instance, the 2024
CNCF open-source project velocity report highlighted that Keycloak, which joined CNCF last year as an incubating
project, is playing a vital role in advancing open-source IAM, backed by a large and active community.

Edge Computing
Kubernetes is playing a crucial role in the evolution of edge computing. By enabling consistent deployment,
monitoring, and management of applications at the edge, Kubernetes significantly reduces latency, enhances real-
time processing capabilities, and supports emerging use cases like IoT and 5G. Projects like KubeEdge and K3s are
at the forefront of this movement. We can expect further optimizations for lightweight and resource-constrained
environments, making Kubernetes even more suitable for edge computing scenarios.

Conclusion
Kubernetes has revolutionized cloud-native computing, transforming how we develop, deploy, and manage
applications. As Kelsey Hightower noted in Google's Kubernetes Podcast, "We are only halfway through its journey,
with the next decade expected to see Kubernetes mature to the point where it 'gets out of the way' by doing its job
so well that it becomes naturally integrated into the background of our infrastructure." Kubernetes' influence will
only grow, shaping the future of technology and empowering organizations to innovate and thrive in an increasingly
complex landscape.

References:

 • "10 Years of Kubernetes" by Bob Killen et al, 2024

 • CNCF Annual Survey 2023 by CNCF, 2023

 • "As we reach mid-year 2024, a look at CNCF, Linux Foundation, and top 30 open source project velocity" by Chris
Aniszczyk, CNCF, 2024

 • "Orchestration Celebration: 10 Years of Kubernetes" by Adrian Bridgwater, 2024

 • "Kubernetes: Beyond Container Orchestration" by Pratik Prakash, 2022

 • "The Staggering Ecological Impacts of Computation and the Cloud" by Steven Gonzalez Monserrate, 2022

I am a senior cloud engineer at RELEX Solutions, specializing in designing
and implementing advanced cloud and Kubernetes infrastructure. I am also a
CNCF Ambassador and Microsoft MVP. With a strong passion for open-source
cloud-native solutions, I actively participate in collaborative projects and share
innovative ideas within the community.

Maryam Tavakkoli

@maryamtavakkoli
@maryam-tavakoli
@maryam.tavakoli.3

https://www.cncf.io/reports/cncf-annual-survey-2023/
https://github.com/keycloak/keycloak
https://github.com/kubeedge/kubeedge
https://github.com/k3s-io/k3s/
https://x.com/kelseyhightower
https://kubernetespodcast.com/episode/227-ten-anniversary-special/
https://kubernetes.io/blog/2024/06/06/10-years-of-kubernetes/
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/blog/2024/07/11/as-we-reach-mid-year-2024-a-look-at-cncf-linux-foundation-and-top-30-open-source-project-velocity/
https://cloudnativenow.com/topics/cloudnativedevelopment/kubernetes/orchestration-celebration-10-years-of-kubernetes/
https://dzone.com/articles/kubernetes-beyond-container-orchestration
https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-the-cloud/
https://dzone.com/users/5180665/maryamtavakkoli.html
https://www.linkedin.com/in/maryam-tavakoli/
https://medium.com/@maryam.tavakoli.3

PAGE 23TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

CONTRIBUTOR INSIGHTS

In the past, before CI/CD and Kubernetes came along, deploying software to Kubernetes was a real headache.
Developers would build stuff on their own machines, then package it and pass it to the operations team to deploy
it on production. This approach would frequently lead to delays, miscommunications, and inconsistencies between
environments. Operations teams had to set up the deployments themselves, which increased the risk of human
errors and configuration issues. When things went wrong, rollbacks were time consuming and disruptive. Also,
without automated feedback and central monitoring, it was tough to keep an eye on how builds and deployments
were progressing or to identify production issues.

With the advent of CI/CD pipelines combined with Kubernetes, deploying software is smoother. Developers can
simply push their code, which triggers builds, tests, and deployments. This enables organizations to ship new
features and updates more frequently and reduce the risk of errors in production.

This article explains the CI/CD transformation with Kubernetes and provides a step-by-step guide to building a pipeline.

Why CI/CD Should Be Combined With Kubernetes
CI/CD paired with Kubernetes is a powerful combination that makes the whole software development process
smoother. Kubernetes, also known as K8s, is an open-source system for automating the deployment, scaling, and
management of containerized applications. CI/CD pipelines, on the other hand, automate how we build, test, and
roll out software. When you put them together, you can deploy more often and faster, boost software quality with
automatic tests and checks, cut down on the chance of pushing out buggy code, and get more done by automating
tasks that used to be done by hand.

CI/CD with Kubernetes helps developers and operations teams work better together by giving them a shared space
to do their jobs. This teamwork lets companies deliver high-quality applications rapidly and reliably, gaining an edge
in today's fast-paced world. Figure 1 lays out the various steps:

Figure 1. Push-based CI/CD pipeline with Kubernetes and monitoring tools

Building a CI/CD Pipeline
With Kubernetes
A Development Guide With Deployment Considerations
for Practitioners
By Naga Santhosh Reddy Vootukuri, Senior Software Engineering Manager at Microsoft

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

PAGE 24TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

There are several benefits in using CI/CD with Kubernetes, including:

 • Faster and more frequent application deployments, which help in rolling out new features or critical
bug fixes to the users

 • Improved quality by automating testing and incorporating quality checks, which helps in reducing
the number of bugs in your applications

 • Reduced risk of deploying broken code to production since CI/CD pipelines can conduct automated
tests and roll-back deployments if any problems exist

 • Increased productivity by automating manual tasks, which can free developers' time to focus on
important projects

 • Improved collaboration between development and operations teams since CI/CD pipelines provide
a shared platform for both teams to work

Tech Stack Options
There are different options available if you are considering building a CI/CD pipeline with Kubernetes. Some of the
popular ones include:

 • Open-source tools such as Jenkins, Argo CD, Tekton, Spinnaker, or GitHub Actions

 • Enterprise tools, including but not limited to, Azure DevOps, GitLab CI/CD, or AWS CodePipeline

Deciding whether to choose an open-source or enterprise platform to build efficient and reliable CI/CD pipelines with
Kubernetes will depend on your project requirements, team capabilities, and budget.

Impact of Platform Engineering on CI/CD With Kubernetes
Platform engineering builds and maintains the underlying infrastructure and tools (the "platform") that development
teams use to create and deploy applications. When it comes to CI/CD with Kubernetes, platform engineering has
a big impact on making the development process better. It does so by hiding the complex parts of the underlying
infrastructure and giving developers self-service options.

Platform engineers manage and curate tools and technologies that work well with Kubernetes to create a smooth
development workflow. They create and maintain CI/CD templates that developers can reuse, allowing them to set
up pipelines without thinking about the details of the infrastructure. They also set up rules and best practices for
containerization, deployment strategies, and security measures, which help maintain consistency and reliability
across different applications.

What's more, platform engineers provide ways to observe and monitor applications running in Kubernetes, which let
developers find and fix problems and make improvements based on data.

By building a strong platform, platform engineering helps dev teams zero in on creating and rolling out features
more without getting bogged down by the complexities of the underlying tech. It brings together developers,
operations, and security teams, which leads to better teamwork and faster progress in how things are built.

How to Build a CI/CD Pipeline With Kubernetes
Regardless of the tech stack you select, you will often find similar workflow patterns and steps. In this section, I will
focus on building a CI/CD pipeline with Kubernetes using GitHub Actions.

Step 1: Setup and prerequisites

 • GitHub account – needed to host your code and manage the CI/CD pipeline using GitHub Actions

 • Kubernetes cluster – create one locally (e.g., MiniKube) or use a managed service from Amazon or Azure

 • kubectl – Kubernetes command line tool to connect to your cluster

 • Container registry – needed for storing Docker images; you can either use a cloud provider's registry
(e.g., Amazon ECR, Azure Container Registry, Google Artifact Registry) or set up your own private registry

 • Node.js and npm – install Node.js and npm to run the sample Node.js web application

 • Visual Studio/Visual Studio Code – IDE platform for making code changes and submitting them to a
GitHub repository

https://www.jenkins.io/doc/book/
https://argo-cd.readthedocs.io/en/stable/
https://tekton.dev/docs/
https://spinnaker.io/docs/
https://docs.github.com/en/actions
https://learn.microsoft.com/en-us/azure/devops/
https://docs.gitlab.com/ee/ci/
https://docs.aws.amazon.com/codepipeline/
https://platformengineering.org/blog/what-is-platform-engineering
https://github.com/signup
https://minikube.sigs.k8s.io/docs/start/?arch=%2Fmacos%2Farm64%2Fstable%2Fbinary+download
https://kubernetes.io/docs/reference/kubectl/
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/products/container-registry
https://cloud.google.com/artifact-registry
https://nodejs.org/en
https://www.npmjs.com/
https://visualstudio.microsoft.com/
https://code.visualstudio.com/

PAGE 25TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Step 2: Create a Node.js web application
Using Visual Studio, create a simple Node.js application with a default template. If you look inside, the server.js in-
built generated file will look like this:

// server.js
'use strict';
var http = require('http');
var port = process.env.PORT || 1337;

http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('Hello from kubernetes\n');
}).listen(port);

Step 3: Create a package.json file to manage dependencies
Inside the project, add a new file Package.json to manage dependencies:

// Package.Json
{
 "name": "nodejs-web-app1",
 "version": "0.0.0",
 "description": "NodejsWebApp",
 "main": "server.js",
 "author": {
 "name": "Sunny"
 },
 "scripts": {
 "start": "node server.js",
 "test": "echo \"Running tests...\" && exit 0"
 },
 "devDependencies": {
 "eslint": "^8.21.0"
 },
 "eslintConfig": {
 }
}

Step 4: Build a container image
Create a Dockerfile to define how to build your application's Docker image:

// Dockerfile
Use the official Node.js image from the Docker Hub
FROM node:14

Create and change to the app directory
WORKDIR /usr/src/app

Copy package.json and package-lock.json
COPY package*.json ./

Install dependencies
RUN npm install

Copy the rest of the application code
COPY . .

CODE CONTINUES ON NEXT PAGE

PAGE 26TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Expose the port the app runs on
EXPOSE 3000

Command to run the application
CMD ["node", "app.js"]

Step 5: Create a Kubernetes Deployment manifest
Create a deployment.yaml file to define how your application will be deployed in Kubernetes:

// deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nodejs-deployment
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nodejs-app
 template:
 metadata:
 labels:
 app: nodejs-app
 spec:
 containers:
 - name: nodejs-container
 image: nodejswebapp
 ports:
 - containerPort: 3000
 env:
 - name: NODE_ENV
 value: "production"

apiVersion: v1
kind: Service
metadata:
 name: nodejs-service
spec:
 selector:
 app: nodejs-app
 ports:
 - protocol: TCP
 port: 80
 targetPort: 3000
 type: LoadBalancer

Step 6: Push code to GitHub
Create a new code repository on GitHub, initialize the repository, commit your code changes, and push it to your
GitHub repository:

git init

git add .

CODE CONTINUES ON NEXT PAGE

PAGE 27TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

git commit -m "Initial commit"

git remote add origin "<remote git repo url>"

git push -u origin main

Step 7: Create a GitHub Actions workflow
Inside your GitHub repository, go to the Actions tab. Create a new workflow (e.g., main.yml) in the .github/
workflows directory. Inside the GitHub repository settings, create Secrets under actions related to Docker and
Kubernetes cluster — these are used in your workflow to authenticate:

//main.yml
name: CI/CD Pipeline

on:
 push:
 branches:
 - main

jobs:
 build:
 runs-on: ubuntu-latest

 steps:
 - name: Checkout code
 uses: actions/checkout@v2

 - name: Set up Node.js
 uses: actions/setup-node@v2
 with:
 node-version: '14'

 - name: Install dependencies
 run: npm install

 - name: Run tests
 run: npm test

 - name: Build Docker image
 run: docker build -t <your-docker-image> .

 - name: Log in to Docker Hub
 uses: docker/login-action@v1
 with:
 username: ${{ secrets.DOCKER_USERNAME }}
 password: ${{ secrets.DOCKER_PASSWORD }}

 - name: Build and push Docker image
 uses: docker/build-push-action@v2
 with:
 context: .
 push: true
 tags: <your-docker-image-tag>

 deploy:

CODE CONTINUES ON NEXT PAGE

PAGE 28TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

 needs: build
 runs-on: ubuntu-latest

 steps:
 - name: Checkout code
 uses: actions/checkout@v2

 - name: Set up kubectl
 uses: azure/setup-kubectl@v1
 with:
 version: 'latest'

 - name: Set up Kubeconfig
 run: echo "${{ secrets.KUBECONFIG }}" > $HOME/.kube/config

 - name: Deploy to Kubernetes
 run: kubectl apply -f deployment.yaml

Step 8: Trigger the pipeline and monitor
Modify server.js and push it to the main branch; this triggers the GitHub Actions workflow. Monitor the
workflow progress. It installs the dependencies, sets up npm, builds the Docker image and pushes it to the container
registry, and deploys the application to Kubernetes.

Once the workflow is completed successfully, you can access your application that is running inside the Kubernetes
cluster. You can leverage open-source monitoring tools like Prometheus and Grafana for metrics.

Deployment Considerations
There are a few deployment considerations to keep in mind when developing CI/CD pipelines with Kubernetes to
maintain security and make the best use of resources:

 • Scalability

 ∘ Use horizontal pod autoscaling to scale your application's Pods based on how much CPU, memory, or
custom metrics are needed. This helps your application work well under varying loads.

 ∘ When using a cloud-based Kubernetes cluster, use the cluster autoscaler to change the number of worker
nodes as needed to ensure enough resources are available and no money is wasted on idle resources.

 ∘ Ensure your CI/CD pipeline incorporates pipeline scalability, allowing it to handle varying workloads
as per your project needs.

 • Security

 ∘ Scan container images regularly to find security issues. Add tools for image scanning into your CI/CD
pipeline to stop deploying insecure code.

 ∘ Implement network policies to limit how Pods and services talk to each other inside a Kubernetes
cluster. This cuts down on ways attackers could get in.

 ∘ Set up secrets management using Kubernetes Secrets or external key vaults to secure and manage
sensitive info such as API keys and passwords.

 ∘ Use role-based access control to control access to Kubernetes resources and CI/CD pipelines.

 • High availability

 ∘ Through multi-AZ or multi-region deployments, you can set up your Kubernetes cluster in different
availability zones or regions to keep it running during outages.

 ∘ Pod disruption budgets help you control how many Pods can be down during planned disruptions
(like fixing nodes) or unplanned ones (like when nodes fail).

 ∘ Implement health checks to monitor the health of your pods and automatically restart if any fail to
maintain availability.

https://github.com/prometheus/prometheus
https://github.com/grafana/grafana
https://dzone.com/refcardz/secrets-management-core-practices

PAGE 29TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

 • Secrets management

 ∘ Store API keys, certificates, and passwords as Kubernetes Secrets, which are encrypted and added to Pods.

 ∘ You can also consider external secrets management tools like HashiCorp Vault, AWS Secrets Manager, or
Azure Key Vault if you need dynamic secret generation and auditing.

Conclusion
Leveraging CI/CD pipelines with Kubernetes has become a must-have approach in today's software development.
It revolutionizes the way teams build, test, and deploy apps, leading to more efficiency and reliability. By using
automation, teamwork, and the strength of container management, CI/CD with Kubernetes empowers organizations
to deliver high-quality software at speed. The growing role of AI and ML will likely have an impact on CI/CD pipelines —
such as smarter testing, automated code reviews, and predictive analysis to further enhance the development process.

When teams adopt best practices, keep improving their pipelines, and are attentive to new trends, they can get the
most out of CI/CD with Kubernetes, thus driving innovation and success.

As a seasoned professional with 17+ years working at Microsoft and specialized skills
in cloud computing and AI, I lead a team of SDEs focused on initiatives in the Azure
SQL deployment space, where we emphasize high availability for SQL customers
during critical feature rollouts. Aside from work, I am a technical book reviewer
for Apress, Packt, Pearson, and Manning publications; judge hackathons; mentor
junior engineers; and write for DZone. I am also a senior IEEE member working on
multiple technical committees.

Naga Santhosh
Reddy Vootukuri

@sunnynagavo
@naga-santhosh-
reddy-vootukur

https://developer.hashicorp.com/
https://docs.aws.amazon.com/secretsmanager/
https://learn.microsoft.com/en-us/azure/key-vault/
https://dzone.com/authors/sunnynagavo
https://www.linkedin.com/in/naga-santhosh-reddy-vootukuri-5a67a133/
https://www.linkedin.com/in/naga-santhosh-reddy-vootukuri-5a67a133/

PAGE 30TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

CONTRIBUTOR INSIGHTS

Kubernetes is driving the future of cloud computing, but its security challenges require us to adopt a full-scale
approach to ensure the safety of our environments. Security is not a one-size-fits-all solution; security is a spectrum,
influenced by the specific context in which it is applied. Security professionals in the field rarely declare anything as
entirely secure, but always as more or less secure than alternatives.

In this article, we are going to present various methods to brace the security of your containers.

Understanding and Mitigating Container Security Threats
To keep your containerized systems secure, it's important to understand the threats they face. Just like a small leak
can sink a ship, even a tiny vulnerability can cause big issues. This section will help you gain a deeper understanding
of container security and will provide guidance on how to mitigate the threats that come with it.

Core Principles of Container Security
Attackers often target containers to hijack their compute power — a common example is to gain access for
unauthorized cryptocurrency mining. Beyond this, a compromised container can expose sensitive data, including
customer information and workload details. In more advanced attacks, the goal is to escape the container and
infiltrate the underlying node. If the attacker succeeds, they can move laterally across the cluster, gaining ongoing
access to critical resources such as user code, processing power, and valuable data across other nodes.

One particularly dangerous attack method is container escape, where an attacker leverages the fact that containers
share the host's kernel. If they gain elevated privileges within a compromised container, they could potentially access
data or processes in other containers on the same host. Additionally, the Kubernetes control plane is a prime target.
If an attacker compromises one of the control plane components, they can manipulate the entire environment,
potentially taking it offline or causing significant disruption.

Furthermore, if the etcd database is compromised, attackers could alter or destroy the cluster, steal secrets and
credentials, or gather enough information to replicate the application elsewhere.

DEFENSE IN DEPTH
Maintaining a secure container
environment requires a layered
strategy that underscores the
principle of defense in depth.
This approach involves
implementing multiple security
controls at various levels.

By deploying overlapping security
measures, you create a system
where each layer of defense
reinforces the others. This way,
even if one security measure is
breached, the others continue
to protect the environment.

Guarding Kubernetes
From the Threat Landscape
Effective Practices for Container Security
By Gal Cohen, Backend Engineer at Mind

Figure 1. Defense-in-depth strategy

https://github.com/etcd-io/etcd

PAGE 31TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

UNDERSTANDING THE ATTACK SURFACE
Part of the security strategy is understanding and managing the attack surface, which encompasses all potential points
of exploitation, including container images, runtime, orchestration tools, the host, and network interfaces. Reducing the
attack surface means simplifying the system and minimizing unnecessary components, services, and code.

By limiting what is running and enforcing strict access controls, you decrease the opportunities for vulnerabilities to
exist or be exploited, making the system more secure and harder for attackers to penetrate.

Common Threats and Mitigation Strategies
Let's shift our focus to the everyday threats in container security and discover the tools you can immediately put to
work to safeguard your systems.

VULNERABLE CONTAINER IMAGES
Relying on container images with security vulnerabilities poses significant risks as these vulnerable images often
include outdated software or components with publicly known vulnerabilities. A vulnerability, in this context, is
essentially a flaw in the code that malicious actors can leverage to trigger harmful outcomes. An example of this is
the infamous Heartbleed flaw in the OpenSSL library, which allowed attackers to access sensitive data by exploiting
a coding error. When such flaws are present in container images, they create opportunities for attackers to breach
systems, leading to potential data theft or service interruptions.

Best practices to secure container images include the following:

 • To effectively reduce the attack surface, start by using minimal base images that include only the essential
components required for your application. This approach minimizes potential vulnerabilities and limits what an
attacker can exploit.

 ∘ Tools like Docker's FROM scratch or distroless images can help create these minimal environments.

 • Understanding and managing container image layers is crucial as each layer can introduce vulnerabilities. By
keeping layers minimal and only including what is necessary, you reduce potential attack vectors.

 ∘ Use multi-stage builds to keep the final image lean and regularly review and update your Dockerfiles to
remove unnecessary layers.

It's important to avoid using unverified or outdated images. Unverified images from public repositories may contain
malware, backdoors, or other malicious components. Outdated images often have unpatched vulnerabilities that
attackers can exploit. To mitigate these risks, always source images from trusted repositories and regularly update
them to the latest versions.

INSECURE CONTAINER RUNTIME
An insecure container runtime is a critical threat as it can lead to privilege escalation, allowing attackers to gain
elevated access within the system. With elevated access, attackers can disrupt services by modifying or terminating
critical processes, causing downtime and impacting the availability of essential applications. They can gain full
control over the container environment, manipulating configurations to deploy malicious containers or introduce
malware, which can be used as a launchpad for further attacks.

Best practices for hardening the container runtime include the following:

 • Implementing strict security boundaries and adhering to the principle of least privilege are essential for
protecting the container runtime.

 ∘ Containers should be configured to run with only the permissions they need to function, minimizing the
potential impact of a security breach. This involves setting up role-based access controls.

 • Admission control is a critical aspect of runtime security that involves validating and regulating requests to
create or update containers in the cluster. By employing admission controllers, you can enforce security policies
and ensure that only compliant and secure container configurations are deployed.

 ∘ This can include checking for the use of approved base images, ensuring that security policies are applied, and
verifying that containers are not running as root.

 ∘ Tools like Open Policy Agent (OPA) can be integrated into your Kubernetes environment to provide flexible
and powerful admission control capabilities. On the following page is an example for OPA policy that acts as a

https://heartbleed.com/
https://docs.docker.com/build/building/base-images/
https://www.docker.com/blog/is-your-container-image-really-distroless/
https://github.com/open-policy-agent/opa

PAGE 32TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

gatekeeper, ensuring no container runs with root privileges:

package kubernetes.admission

deny[msg] {
 input.request.kind.kind == "Pod"
 input.request.object.spec.containers[_].securityContext.runAsUser == 0
 msg = "Containers must not run as root."
}

There are a few practices to avoid when securing container runtime:

 • If a container running as root is compromised, an attacker can gain root-level access to the host system,
potentially leading to a full system takeover.

 • When containers have unrestricted access to host resources, like the file system, network, or devices, a
compromised container could exploit this access to then tamper with the host system, steal sensitive data, or
disrupt other services.

 ∘ To prevent such scenarios, use tools like seccomp and AppArmor. These tools can restrict the system calls that
containers make and enforce specific security policies.

 ∘ By applying these controls, you can confine containers to their intended operations, protecting the host
system from potential breaches or unauthorized activities.

MISCONFIGURED KUBERNETES SETTINGS
Misconfigured Kubernetes settings are a significant threat as they expose the cluster to attacks through overly
permissive network policies, weak access controls, and poor secrets management:

 • Overly permissive network policies enable attackers to intercept and tamper with data.

 • Weak access controls allow unauthorized users to perform administrative tasks, disrupt services,
and alter configurations.

 • Poor secrets management exposes sensitive information like API keys and passwords, enabling attackers
to escalate privileges.

Best practices for secure Kubernetes configuration are as follows:

 • The risk of transmitting sensitive information without protection is that it can be intercepted or tampered with
by malicious actors during transit. To mitigate this risk, secure all communication channels with transport
layer security (TLS).

 ∘ Kubernetes offers tools like cert-manager to automate the management and renewal of TLS certificates. This
ensures that communication between services remains encrypted and secure, thereby protecting your data
from interception or manipulation.

 • Network policies control the traffic flow between Pods and services in a Kubernetes cluster. By defining network
policies, you can isolate sensitive workloads and reduce the risk of lateral movement in case of a compromise.

 ∘ Use Kubernetes' native NetworkPolicy resource to create rules that enforce your desired network security posture.

On the other hand, it's important to avoid exposing unnecessary application ports. Exposure of ports provides
multiple entry points for attackers, making the cluster more vulnerable to exploits.

CI/CD Security
CI/CD pipelines are granted extensive permissions, ensuring they can interact closely with production systems
and manage updates. However, this extensive access also makes CI/CD pipelines a significant security risk. If
compromised, attackers can exploit these broad permissions to manipulate deployments, introduce malicious code,
gain unauthorized access to critical systems, steal sensitive data, or create backdoors for ongoing access.

There are several best practices to implement when securing CI/CD. The first best practice is ensuring that once a
container image is built and deployed, it is immutable. We always want to make sure the Pod is running on exactly
what we intended. It also helps in quickly identifying and rolling back to previous stable versions if a security issue
arises, maintaining a reliable and predictable deployment process.

https://kubernetes.io/docs/tutorials/security/seccomp/
https://apparmor.net/
https://dzone.com/refcardz/secrets-management-core-practices
https://github.com/cert-manager/cert-manager
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://dzone.com/refcardz/getting-started-with-cicd-pipeline-security

PAGE 33TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Implementing immutable deployments involves several key steps to ensure consistency and security:

1. Assign unique version tags to each container image build, avoiding mutable tags like "latest," and use
Infrastructure-as-Code tools like Terraform or Ansible to maintain consistent setups.

2. Configure containers with read-only file systems to prevent changes post-deployment.

3. Implement continuous monitoring with tools like Prometheus and runtime security with Falco to help detect
and alert to unauthorized changes, maintaining the security and reliability of your deployments.

Another best practice is implementing image vulnerability scanning in CI/CD. Vulnerability scanners meticulously
analyze the components of container images, identifying known security flaws that could be exploited. Beyond just
examining packages managed by tools like DNF or apt, advanced scanners also inspect additional files added during
the build process, such as those introduced through Dockerfile commands like ADD , COPY , or RUN .

It's important to include both third-party and internally created images in these scans as new vulnerabilities are
constantly emerging. To guarantee that images are thoroughly scanned for vulnerabilities before deployment,
scanning tools like Clair or Trivy can be directly embedded into your CI/CD pipeline.

Do not store sensitive information directly in the source code (e.g., API keys, passwords) as this increases the risk of
unauthorized access and data breaches. Use secrets management tools like SOPS, AWS Secrets Manager, or Google
Cloud Secret Manager to securely handle and encrypt sensitive information.

Conclusion
Regularly assessing and improving Kubernetes security measures is not just important — it's essential. By
implementing the strategies we introduced above, organizations can protect their Kubernetes environments,
ensuring that containerized applications are more secure and resilient against challenges. In the future, we
anticipate that attackers will develop more sophisticated methods to specifically bypass Kubernetes' built-in
security features. As organizations increasingly rely on Kubernetes for critical workloads, attackers will likely invest
time in uncovering new vulnerabilities or weaknesses in Kubernetes' security architecture, potentially leading to
breaches that are more difficult to detect and mitigate.

The path to a secure Kubernetes environment is clear, and the time to act is now. Prioritize security to safeguard
your future.

Gal Cohen is a software engineer with years of experience in the cloud and engineering. She
has earned a reputation as an expert in her field. Gal is also a passionate tech blogger with
thousands of frequent readers.

Gal Cohen

@Galco
@galco5

https://github.com/hashicorp/terraform
https://github.com/ansible
https://github.com/prometheus
https://github.com/falcosecurity/falco
https://github.com/rpm-software-management/dnf
https://wiki.debian.org/Apt
https://github.com/quay/clair
https://github.com/aquasecurity/trivy
https://github.com/getsops/sops
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://cloud.google.com/secret-manager/docs
https://cloud.google.com/secret-manager/docs
https://dzone.com/users/4989920/galco.html
https://www.linkedin.com/in/galco5/

PAGE 34TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

CONTRIBUTOR INSIGHTS

In recent years, observability has re-emerged as a critical aspect of DevOps and software engineering in general,
driven by the growing complexity and scale of modern, cloud-native applications. The transition toward microservices
architecture as well as complex cloud deployments — ranging from multi-region to multi-cloud, or even hybrid-
cloud, environments — has highlighted the shortcomings of traditional methods of monitoring.

In response, the industry has standardized utilizing logs, metrics, and traces as the three pillars of observability to
provide a more comprehensive sense of how the application and entire stack is performing. We now have a plethora
of tools to collect, store, and analyze various signals to diagnose issues, optimize performance, and respond to issues.

Yet anyone working with Kubernetes will still say that observability in Kubernetes remains challenging. Part of it
comes from the inherent complexity of working with Kubernetes, but the fact of the matter is that logs, metrics,
and traces alone don't make up observability. Also, the vast ecosystem of observability tooling does not necessarily
equate to ease of use or high ROI, especially given today's renewed focus on cost. In this article, we'll dive into some
considerations for Kubernetes observability, challenges of and some potential solutions for implementing it, and the
oft forgotten aspect of developer experience in observability.

Considerations for Kubernetes Observability
When considering observability for Kubernetes, most have a tendency to dive straight into tool choices, but it's
advisable to take a hard look at what falls under the scope of things to "observe" for your use case. Within Kubernetes
alone, we already need to consider:

 • Cluster components – API server, etcd, controller manager, scheduler
 • Node components – kublect, kube-proxy, container runtime
 • Other resources – CoreDNS, storage plugins, Ingress controllers
 • Network – CNI, service mesh
 • Security and access – audit logs, security policies
 • Application – both internal and third-party applications

And most often, we inevitably have components that run outside of Kubernetes but interface with many applications
running inside. Most notably, we have databases ranging from managed cloud offerings to external data lakes. We
also have things like serverless functions, queues, or other Kubernetes clusters that we need to think about.

Next, we need to identify the users of Kubernetes as well as the consumers of these observability tools. It's important
to consider these personas as building for an internal-only cluster vs. a multi-tenant SaaS cluster may have different
requirements (e.g., privacy, compliance). Also, depending on the team composition, the primary consumers of these
tools may be developers or dedicated DevOps/SRE teams who will have different levels of expertise with not only
these tools but with Kubernetes itself.

Only after considering the above factors can we start to talk about what tools to use. For example, if most
applications are already on Kubernetes, using a Kubernetes-focused tool may suffice, whereas organizations with lots
of legacy components may elect to reuse an existing observability stack. Also, a large organization with various teams
mostly operating as independent verticals may opt to use their own tooling stack, whereas a smaller startup may opt
to pay for an enterprise offering to simplify the setup across teams.

Challenges and Recommendations for Observability Implementation
After considering the scope and the intended audience of our observability stack, we're ready to narrow down the
tool choices. Largely speaking, there are two options for implementing an observability stack: open source and
commercial/SaaS.

Kubernetes Observability
Lessons Learned From Running Kubernetes in Production
By Yitaek Hwang, Software Engineer at NYDIG

PAGE 35TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Open-Source Observability Stack
The primary challenge with implementing a fully open-source observability solution is that there is no single tool that
covers all aspects. Instead, what we have are ecosystems or stacks of tools that cover different aspects of observability.
One of the more popular tech stacks from Prometheus and Grafana Lab's suite of products include:

 • Prometheus for scraping metrics and alerting
 • Loki for collecting logs
 • Tempo for distributed tracing
 • Grafana for visualization

While the above setup does cover a vast majority of observability requirements, they still operate as individual
microservices and do not provide the same level of uniformity as a commercial or SaaS product. But in recent years,
there has been a strong push to at least standardize on OpenTelemetry conventions to unify how to collect metrics,
logs, and traces. Since OpenTelemetry is a framework that is tool agnostic, it can be used with many popular open-
source tools like Prometheus and Jaeger.

Ideally, architecting with OpenTelemetry in mind will make standardization of how to generate, collect, and manage
telemetry data easier with the growing list of compliant open-source tools. However, in practice, most organizations
will already have established tools or in-house versions of them — whether that is the EFK (Elasticsearch, Fluentd,
Kibana) stack or Prometheus/Grafana. Instead of forcing a new framework or tool, apply the ethos of standardization
and improve what and how telemetry data is collected and stored.

Finally, one of the common challenges with open-source tooling is dealing with storage. Some tools like Prometheus
cannot scale without offloading storage with another solution like Thanos or Mimir. But in general, it's easy to forget
to monitor the observability tooling health itself and scale the back end accordingly. More telemetry data does not
necessarily equal more signals, so keep a close eye on the volume and optimize as needed.

Commercial Observability Stack
On the commercial offering side, we usually have agent-based solutions where telemetry data is collected from
agents running as DaemonSets on Kubernetes. Nowadays, almost all commercial offerings have a comprehensive
suite of tools that combine into a seamless experience to connect logs to metrics to traces in a single user interface.

The primary challenge with commercial tools is controlling cost. This usually comes in the form of exposing
cardinality from tags and metadata. In the context of Kubernetes, every Pod has tons of metadata related to not only
Kubernetes state but the state of the associated tooling as well (e.g., annotations used by Helm or ArgoCD). These
metadata then get ingested as additional tags and date fields by the agents.

Since commercial tools have to index all the data to make telemetry queryable and sortable, increased cardinality
from additional dimensions (usually in the form of tags) causes issues with performance and storage. This directly
results in higher cost to the end user. Fortunately, most tools now allow the user to control which tags to index and
even downsample data to avoid getting charged for repetitive data points that are not useful. Be aggressive with
filters and pipeline logic to only index what is needed; otherwise, don't be surprised by the ballooning bill.

Remembering the Developer Experience
Regardless of the tool choice, one common pitfall that many teams face is over-optimizing for ops usage and
neglecting the developer experience when it comes to observability. Despite the promise of DevOps, observability
often falls under the realm of ops teams, whether that be platform, SRE, or DevOps engineering. This makes it easy
for teams to build for what they know and what they need, over-indexing on infrastructure and not investing as
much on application-level telemetry. This ends up alienating developers to invest less time or become too reliant on
their ops counterparts for setup or debugging.

To make observability truly useful for everyone involved, don't forget about these points:

 • Access. It's usually more of a problem with open-source tools, but make sure access to logs, dashboards, and
alerts are not gated by unnecessary approvals. Ideally, having quick links from existing mediums like IDEs or
Slack can make tooling more accessible.

 • Onboarding. It's rare for developers to go through the same level of onboarding in learning how to use any of
these tools. Invest some time to get them up to speed.

https://github.com/prometheus
https://github.com/grafana/loki
https://github.com/grafana/tempo
https://github.com/grafana/grafana
https://github.com/open-telemetry
https://github.com/jaegertracing/jaeger
https://github.com/elastic/elasticsearch
https://github.com/fluent/fluentd
https://github.com/elastic/kibana
https://github.com/thanos-io/thanos
https://github.com/grafana/mimir

PAGE 36TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

 • Standardization vs. flexibility. While a standard format like JSON is great for indexing, it may not be as human
readable and is filled with extra information. Think of ways to present information in a usable format.

At the end of the day, the goals of developers and ops teams should be aligned. We want tools that are easy to
integrate, with minimal overhead, that produce intuitive dashboards and actionable, contextual information without
too much noise. Even with the best tools, you still need to work with developers who are responsible for generating
telemetry and also acting on it, so don't neglect the developer experience entirely.

Final Thoughts
Observability has been a hot topic in recent years due to several key factors, including the rise of complex, modern
software coupled with DevOps and SRE practices to deal with that complexity. The community has moved past the
simple notion of monitoring to defining the three pillars of observability as well as creating new frameworks to help
with generation, collection, and management of these telemetry data.

Observability in a Kubernetes context has remained challenging so far given the large scope of things to "observe"
as well as the complexity of each component. With the open source ecosystem, we have seen a large fragmentation
of specialized tools that is just now integrating into a standard framework. On the commercial side, we have great
support for Kubernetes, but cost control has been a huge issue. And to top it off, lost in all of this complexity is the
developer experience in helping feed data into and using the insights from the observability stack.

But as the community has done before, tools and experience will continue to improve. We already see significant
research and advances in how AI technology can improve observability tooling and experience. Not only do we see
better data-driven decision making, but generative AI technology can also help surface information better in context
to make tools more useful without too much overhead.

Yitaek is a software engineer at NYDIG, where he works with Bitcoin technology
primarily on custody. He has experience building infrastructure and developer
tooling for various industries ranging from IoT to blockchain. He often writes about
cloud, DevOps/SRE, and data engineering topics.

Yitaek Hwang

@yitaek
yitaekhwang.com

https://dzone.com/authors/yitaek
https://www.yitaekhwang.com/

PAGE 37TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

CONTRIBUTOR INSIGHTS

Kubernetes has become a cornerstone in modern infrastructure, particularly for deploying, scaling, and managing
artificial intelligence and machine learning (AI/ML) workloads. As organizations increasingly rely on machine learning
models for critical tasks like data processing, model training, and inference, Kubernetes offers the flexibility and
scalability needed to manage these complex workloads efficiently.

By leveraging Kubernetes' robust ecosystem, AI/ML workloads can be dynamically orchestrated, ensuring optimal
resource utilization and high availability across cloud environments. This synergy between Kubernetes and AI/ML
empowers organizations to deploy and scale their ML workloads with greater agility and reliability.

This article delves into the key aspects of managing AI/ML workloads within Kubernetes, focusing on strategies for
resource allocation, scaling, and automation specific to this platform. By addressing the unique demands of AI/ML
tasks in a Kubernetes environment, it provides practical insights to help organizations optimize their ML operations.
Whether handling resource-intensive computations or automating deployments, this guide offers actionable advice
for leveraging Kubernetes to enhance the performance, efficiency, and reliability of AI/ML workflows, making it an
indispensable tool for modern enterprises.

Understanding Kubernetes and AI/ML Workloads
In order to effectively manage AI/ML workloads in Kubernetes, it is important to first understand the architecture and
components of the platform.

Overview of Kubernetes Architecture
Kubernetes architecture is designed to manage containerized applications at scale. The architecture is built around
two main components: the control plane (coordinator nodes) and the worker nodes.

Figure 1. Kubernetes architecture

Key Considerations for Effective
AI/ML Deployments in Kubernetes
By Rajesh Vishnupant Gheware, Director at Gheware UniGPS Solutions LLP

PAGE 38TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

For more information, or to review the individual components of the architecture in Figure 1, check out the
Kubernetes Documentation.

AI/ML Workloads: Model Training, Inference, and Data Processing
AI/ML workloads are computational tasks that involve training machine learning models, making predictions
(inference) based on those models, and processing large datasets to derive insights. AI/ML workloads are essential for
driving innovation and making data-driven decisions in modern enterprises:

 • Model training enables systems to learn from vast datasets, uncovering patterns that power intelligent applications.

 • Inference allows these models to generate real-time predictions, enhancing user experiences and automating
decision-making processes.

 • Efficient data processing is crucial for transforming raw data into actionable insights, fueling the entire
AI/ML pipeline.

However, managing these computationally intensive tasks requires a robust infrastructure. This is where Kubernetes
comes into play, providing the scalability, automation, and resource management needed to handle AI/ML workloads
effectively, ensuring they run seamlessly in production environments.

Key Considerations for Managing AI/ML Workloads in Kubernetes
Successfully managing AI/ML workloads in Kubernetes requires careful attention to several critical factors. This
section outlines the key considerations for ensuring that your AI/ML workloads are optimized for performance and
reliability within a Kubernetes environment.

Resource Management
Effective resource management is crucial when deploying AI/ML workloads on Kubernetes. AI/ML tasks, particularly
model training and inference, are resource intensive and often require specialized hardware such as GPUs or
TPUs. Kubernetes allows for the efficient allocation of CPU, memory, and GPUs through resource requests and
limits. These configurations ensure that containers have the necessary resources while preventing them from
monopolizing node capacity.

Additionally, Kubernetes supports the use of node selectors and taints/tolerations to assign workloads to nodes
with the required hardware (e.g., GPU nodes). Managing resources efficiently helps optimize cluster performance,
ensuring that AI/ML tasks run smoothly without over-provisioning or under-utilizing the infrastructure. Handling
resource-intensive tasks requires careful planning, particularly when managing distributed training jobs that need
to run across multiple nodes.

These workloads benefit from Kubernetes' ability to distribute resources while ensuring that high-priority tasks
receive adequate computational power.

Scalability
Scalability is another critical factor in managing AI/ML workloads in Kubernetes. Horizontal scaling, where additional
Pods are added to handle increased demand, is particularly useful for stateless workloads like inference tasks that
can be easily distributed across multiple Pods. Vertical scaling, which involves increasing the resources available to
a single Pod (e.g., more CPU or memory), can be beneficial for resource-intensive processes like model training that
require more power to handle large datasets.

In addition to Pod autoscaling, Kubernetes clusters benefit from cluster autoscaling to dynamically adjust the
number of worker nodes based on demand. Karpenter is particularly suited for AI/ML workloads due to its ability
to quickly provision and scale nodes based on real-time resource needs. Karpenter optimizes node placement by
selecting the most appropriate instance types and regions, taking into account workload requirements like GPU or
memory needs.

By leveraging Karpenter, Kubernetes clusters can efficiently scale up during resource-intensive AI/ML tasks, ensuring
that workloads have sufficient capacity without over-provisioning resources during idle times. This leads to improved
cost efficiency and resource utilization, especially for complex AI/ML operations that require on-demand scalability.

These autoscaling mechanisms enable Kubernetes to dynamically adjust to workload demands, optimizing both
cost and performance.

https://kubernetes.io/docs/concepts/architecture/
https://dzone.com/articles/ai-critical-phases-of-training-and-inference
https://kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/
https://github.com/aws/karpenter-provider-aws

PAGE 39TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Data Management
AI/ML workloads often require access to large datasets and persistent storage for model checkpoints and logs.
Kubernetes offers several persistent storage options to accommodate these needs, including PersistentVolumes
(PVs) and PersistentVolumeClaims (PVCs). These options allow workloads to access durable storage across various
cloud and on-premises environments. Additionally, Kubernetes integrates with cloud storage solutions like AWS EBS,
Google Cloud Storage, and Azure Disk Storage, making it easier to manage storage in hybrid or multi-cloud setups.

Handling large volumes of training data requires efficient data pipelines that can stream or batch process data into
models running within the cluster. This can involve integrating with external systems, such as distributed file systems
or databases, and using tools like Apache Kafka for real-time data ingestion. Properly managing data is essential for
maintaining high-performance AI/ML pipelines, ensuring that models have quick and reliable access to the data they
need for both training and inference.

Deployment Automation
Automation is key to managing the complexity of AI/ML workflows, particularly when deploying models into
production. CI/CD pipelines can automate the build, test, and deployment processes, ensuring that models are
continuously integrated and deployed with minimal manual intervention. Kubernetes integrates well with CI/CD
tools like Jenkins, GitLab CI/CD, and Argo CD, enabling seamless automation of model deployments. Tools and best
practices for automating AI/ML deployments include using Helm for managing Kubernetes manifests, Kustomize for
configuration management, and Kubeflow for orchestrating ML workflows.

These tools help standardize the deployment process, reduce errors, and ensure consistency across environments.
By automating deployment, organizations can rapidly iterate on AI/ML models, respond to new data, and scale their
operations efficiently, all while maintaining the agility needed in fast-paced AI/ML projects.

Scheduling and Orchestration
Scheduling and orchestration for AI/ML workloads require more nuanced approaches compared to traditional
applications. Kubernetes excels at managing these different scheduling needs through its flexible and powerful
scheduling mechanisms. Batch scheduling is typically used for tasks like model training, where large datasets are
processed in chunks. Kubernetes supports batch scheduling by allowing these jobs to be queued and executed
when resources are available, making them ideal for non-critical workloads that are not time sensitive. Kubernetes
Job and CronJob resources are particularly useful for automating the execution of batch jobs based on specific
conditions or schedules.

On the other hand, real-time processing is used for tasks like model inference, where latency is critical. Kubernetes
ensures low latency by providing mechanisms such as Pod priority and preemption, ensuring that real-time
workloads have immediate access to the necessary resources. Additionally, Kubernetes' HorizontalPodAutoscaler can
dynamically adjust the number of pods to meet demand, further supporting the needs of real-time processing tasks.
By leveraging these Kubernetes features, organizations can ensure that both batch and real-time AI/ML workloads
are executed efficiently and effectively.

Gang scheduling is another important concept for distributed training in AI/ML workloads. Distributed training
involves breaking down model training tasks across multiple nodes to reduce training time, and gang scheduling
ensures that all the required resources across nodes are scheduled simultaneously. This is crucial for distributed
training, where all parts of the job must start together to function correctly. Without gang scheduling, some
tasks might start while others are still waiting for resources, leading to inefficiencies and extended training times.
Kubernetes supports gang scheduling through custom schedulers like Volcano, which is designed for high-
performance computing and ML workloads.

Latency and Throughput
Performance considerations for AI/ML workloads go beyond just resource allocation; they also involve optimizing
for latency and throughput. Latency refers to the time it takes for a task to be processed, which is critical for
real-time AI/ML workloads such as model inference. Ensuring low latency is essential for applications like online
recommendations, fraud detection, or any use case where real-time decision making is required. Kubernetes can
manage latency by prioritizing real-time workloads, using features like node affinity to ensure that inference tasks are
placed on nodes with the least network hops or proximity to data sources.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.aws.amazon.com/ebs/latest/userguide/what-is-ebs.html
https://cloud.google.com/storage/docs
https://learn.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://kafka.apache.org/documentation/
https://github.com/jenkinsci
https://docs.gitlab.com/ee/ci/
https://argo-cd.readthedocs.io/en/stable/
https://helm.sh/docs/
https://github.com/kubernetes-sigs/kustomize/
https://github.com/kubeflow/
https://www.kubeflow.org/docs/components/training/user-guides/job-scheduling/#running-jobs-with-gang-scheduling
https://github.com/volcano-sh/

PAGE 40TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Throughput, on the other hand, refers to the number of tasks that can be processed within a given time frame. For
AI/ML workloads, especially in scenarios like batch processing or distributed training, high throughput is crucial.
Optimizing throughput often involves scaling out workloads horizontally across multiple Pods and nodes. Kubernetes'
autoscaling capabilities, combined with optimized scheduling, ensure that AI/ML workloads maintain high throughput
— even as demand increases. Achieving the right balance between latency and throughput is vital for the efficiency of
AI/ML pipelines, ensuring that models perform at their best while meeting real-world application demands.

A Step-by-Step Guide: Deploying TensorFlow Sentiment Analysis Model on AWS EKS
In this example, we demonstrate how to deploy a TensorFlow-based sentiment analysis model using AWS Elastic
Kubernetes Service (EKS). This hands-on guide will walk you through setting up a Flask-based Python application,
containerizing it with Docker, and deploying it on AWS EKS using Kubernetes. Although many tools are suitable,
TensorFlow was chosen for this example due to its popularity and robustness in developing AI/ML models, while AWS
EKS provides a scalable and managed Kubernetes environment that simplifies the deployment process.

By following this guide, readers will gain practical insights into deploying AI/ML models in a cloud-native
environment, leveraging Kubernetes for efficient resource management and scalability.

Step 1: Create a Flask-based Python app setup
Create a Flask app (app.py) using the Hugging Face transformers pipeline for sentiment analysis:

from flask import Flask, request, jsonify
from transformers import pipeline

app = Flask(__name__)
sentiment_model = pipeline("sentiment-analysis")

@app.route('/analyze', methods=['POST'])
def analyze():
 data = request.get_json()
 result = sentiment_model(data['text'])
 return jsonify(result)

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

Step 2: Create requirements.txt

transformers==4.24.0
torch==1.12.1
flask
jinja2
markupsafe==2.0.1

Step 3: Build Docker image
Create a Dockerfile to containerize the app:

FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "app.py"]

Build and push the Docker image:

docker build -t brainupgrade/aiml-sentiment:20240825 .
docker push brainupgrade/aiml-sentiment:20240825

https://github.com/tensorflow
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/

PAGE 41TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Step 4: Deploy to AWS EKS with Karpenter
Create a Kubernetes Deployment manifest (deployment.yaml):

apiVersion: apps/v1
kind: Deployment
metadata:
 name: sentiment-analysis
spec:
 replicas: 1
 selector:
 matchLabels:
 app: sentiment-analysis
 template:
 metadata:
 labels:
 app: sentiment-analysis
 spec:
 containers:
 - name: sentiment-analysis
 image: brainupgrade/aiml-sentiment:20240825
 ports:
 - containerPort: 5000
 resources:
 requests:
 aws.amazon.com/neuron: 1
 limits:
 aws.amazon.com/neuron: 1
 tolerations:
 - key: "aiml"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"

Apply the Deployment to the EKS cluster:

kubectl apply -f deployment.yaml

Karpenter will automatically scale the cluster and launch an inf1.xlarge EC2 instance based on the resource
specification (aws.amazon.com/neuron: 1). Karpenter also installs appropriate device drivers for this special AWS
EC2 instance of inf1.xlarge , which is optimized for deep learning inference, featuring four vCPUs, 16 GiB RAM,
and one Inferentia chip.

Reference Karpenter spec as follows:

apiVersion: karpenter.sh/v1alpha5
kind: Provisioner
metadata:
 name: default
spec:
 limits:
 resources:
 cpu: "16"
 provider:
 instanceProfile: eksctl-KarpenterNodeInstanceProfile-<cluster-name>

CODE CONTINUES ON NEXT PAGE

PAGE 42TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

 securityGroupSelector:
 karpenter.sh/discovery: <cluster-name>
 subnetSelector:
 karpenter.sh/discovery: <cluster-name>
 requirements:
 - key: karpenter.sh/capacity-type
 operator: In
 values:
 - spot
 - key: node.kubernetes.io/instance-type
 operator: In
 values:
 - inf1.xlarge
 - key: kubernetes.io/os
 operator: In
 values:
 - linux
 - key: kubernetes.io/arch
 operator: In
 values:
 - amd64
 ttlSecondsAfterEmpty: 30

Step 5: Test the application
Once deployed and exposed via an AWS Load Balancer or Ingress, test the app with the following cURL command:

curl -X POST -H "Content-Type: application/json" -d '{"text":"I love using this product!"}'
https://<app-url>/analyze

This command sends a sentiment analysis request to the deployed model endpoint: https://<app-url>/analyze .

Challenges and Solutions
Managing AI/ML workloads in Kubernetes comes with its own set of challenges, from handling ephemeral containers
to ensuring security and maintaining observability. In this section, we will explore these challenges in detail and
provide practical solutions to help you effectively manage AI/ML workloads in a Kubernetes environment.

Maintaining State in Ephemeral Containers
One of the main challenges in managing AI/ML workloads in Kubernetes is handling ephemeral containers while
maintaining state. Containers are designed to be stateless, which can complicate AI/ML workflows that require
persistent storage for datasets, model checkpoints, or intermediate outputs. For maintaining state in ephemeral
containers, Kubernetes offers PVs and PVCs, which enable long-term storage for AI/ML workloads, even if the
containers themselves are short-lived.

Ensuring Security and Compliance
Another significant challenge is ensuring security and compliance. AI/ML workloads often involve sensitive data,
and maintaining security at multiple levels — network, access control, and data integrity — is crucial for meeting
compliance standards. To address security challenges, Kubernetes provides role-based access control (RBAC) and
NetworkPolicies. RBAC ensures that users and services have only the necessary permissions, minimizing security
risks. NetworkPolicies allow for fine-grained control over network traffic, ensuring that sensitive data remains
protected within the cluster.

Observability in Kubernetes Environments
Additionally, observability is a key challenge in Kubernetes environments. AI/ML workloads can be complex, with
numerous microservices and components, making it difficult to monitor performance, track resource usage, and
detect potential issues in real time. Monitoring and logging are essential for observability in Kubernetes. Tools like

https://kubernetes-sigs.github.io/aws-load-balancer-controller/latest/

PAGE 43TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Prometheus and Grafana provide robust solutions for monitoring system health, resource usage, and performance
metrics. Prometheus can collect real-time metrics from AI/ML workloads, while Grafana visualizes this data, offering
actionable insights for administrators. Together, they enable proactive monitoring, allowing teams to identify and
address potential issues before they impact operations.

Conclusion
In this article, we explored the key considerations for managing AI/ML workloads in Kubernetes, focusing on resource
management, scalability, data handling, and deployment automation. We covered essential concepts like efficient
CPU, GPU, and TPU allocation, scaling mechanisms, and the use of persistent storage to support AI/ML workflows.
Additionally, we examined how Kubernetes uses features like RBAC and NetworkPolicies and tools like Prometheus
and Grafana to ensure security, observability, and monitoring for AI/ML workloads.

Looking ahead, AI/ML workload management in Kubernetes is expected to evolve with advancements in hardware
accelerators and more intelligent autoscaling solutions like Karpenter. Integration of AI-driven orchestration tools and
the emergence of Kubernetes-native ML frameworks will further streamline and optimize AI/ML operations, making
it easier to scale complex models and handle ever-growing data demands.

For practitioners, staying informed about the latest Kubernetes tools and best practices is crucial. Continuous
learning and adaptation to new technologies will empower you to manage AI/ML workloads efficiently, ensuring
robust, scalable, and high-performance applications in production environments.

Rajesh Gheware is an accomplished chief architect with more than 24
years of experience in cloud computing, Kubernetes, DevOps, and security.
A published author and technical mentor, he drives innovation in complex
IT projects. Connect with him on LinkedIn for insights into advanced
Kubernetes operations and cutting-edge technology strategies.

Rajesh Vishnupant Gheware

@rajeshg007
@rajesh-gheware

https://github.com/prometheus
https://github.com/grafana/
https://dzone.com/users/4519738/rajeshg007.html
https://www.linkedin.com/in/rajesh-gheware

PAGE 44TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

ADDITIONAL RESOURCES

Diving Deeper
Into Kubernetes

DZONE TREND REPORTS

Kubernetes in the Enterprise:
Redefining the Container Ecosystem
In DZone's 2023 report, we dive into
Kubernetes over the last year, its core
usages as well as emerging trends (and
challenges), and what these all mean for

our developer community. Featured in this report are
actionable observations from our original research,
expert content written by members of the DZone
Community, and other helpful resources to help you go
forth in your organizations, projects, and repos.

Cloud Native: Championing Cloud
Development Across the SDLC
DZone's 2024 Trend Report explores how
evolving technology and methodologies
are driving the vision for what cloud
native means today. Articles from DZone

Community experts bring the cloud native "pillars"
into conversation via topics like automating the cloud
via orchestration and AI, using shift left to improve
delivery and strengthen security, surviving observability
challenges, and strategizing cost optimizations.

DZONE REFCARDS

Kubernetes Monitoring Essentials: Exploring
Approaches for Monitoring Distributed Kubernetes [...]
This Refcard presents the benefits and challenges of
monitoring Kubernetes, followed by the fundamentals
of building a Kubernetes monitoring framework: how
to capture monitoring data insights, leverage core
Kubernetes components for monitoring, and identify
key metrics — plus the critical Kubernetes components
and services you should be monitoring.

Cloud-Native Application Security: Patterns
and Anti-Patterns
This Refcard walks through the critical challenges of
cloud-native application security, how to build security
into the CI/CD pipeline, and the core patterns and
anti-patterns for securing your cloud-native apps.

CORE CREATORS

Abhishek Gupta, Principal Developer
Advocate, AWS
Over the course of his career, Abhishek has
worn multiple hats including engineering,

product management, and developer advocacy.
Most of his work has revolved around open-source
technologies, including distributed data systems and
cloud-native platforms. Abhishek is also an open source
contributor and avid blogger.

Marija Naumovska, Product Manager,
Microtica
As a co-founder of Microtica, Marija helps
developers get their applications deployed

on the cloud in minutes. She's a software engineer
with 10+ years of experience, who now works as
head of growth and technical content producer full
time. She writes about cloud, DevOps, GitOps, and
containerization topics.

Saurabh Dashora, Founder,
ProgressiveCoder
Saurabh is a full-stack architect, technical
writer, and guest author for various

publications. He has expertise in building distributed
systems across multiple business domains, such as
banking, autonomous driving, and retail. He runs a tech
blog on cloud, microservices, and web development,
where he has written hundreds of articles. Apart from
work, he enjoys reading and playing video games.

https://dzone.com/trendreports/kubernetes-in-the-enterprise-2
https://dzone.com/trendreports/kubernetes-in-the-enterprise-2
https://dzone.com/trendreports/kubernetes-in-the-enterprise-2
https://dzone.com/trendreports/kubernetes-in-the-enterprise-2
https://dzone.com/trendreports/cloud-native-4
https://dzone.com/trendreports/cloud-native-4
https://dzone.com/trendreports/cloud-native-4
https://dzone.com/trendreports/cloud-native-4
https://dzone.com/refcardz/monitoring-kubernetes
https://dzone.com/refcardz/monitoring-kubernetes
https://dzone.com/refcardz/monitoring-kubernetes
https://dzone.com/refcardz/cloud-native-application-security-1
https://dzone.com/refcardz/cloud-native-application-security-1
https://dzone.com/refcardz/cloud-native-application-security-1
https://dzone.com/authors/abhirockzz
https://dzone.com/authors/abhirockzz
https://dzone.com/authors/abhirockzz
https://dzone.com/authors/abhirockzz
https://dzone.com/authors/marulka
https://dzone.com/authors/marulka
https://dzone.com/authors/marulka
https://dzone.com/authors/marulka
https://dzone.com/authors/saurabhdashora
https://dzone.com/authors/saurabhdashora
https://dzone.com/authors/saurabhdashora
https://dzone.com/authors/saurabhdashora

PAGE 45TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

Solutions Directory

ADDITIONAL RESOURCES

This directory contains Kubernetes and cloud-native tools for end-to-end container
management. It provides pricing data and product category information gathered from
vendor websites and project pages. Solutions are selected for inclusion based on several
impartial criteria, including solution maturity, technical innovativeness, relevance, and
data availability.

DZONE'S 2024 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Fairwinds
Fairwinds Managed
Kubernetes-as-a-Service

Production-ready Kubernetes:
architected, built, managed

By request fairwinds.com/managed-kubernetes

Spot by NetApp Ocean
Serverless infrastructure
container engine

By request spot.io/product/ocean

Sysdig Sysdig Secure Cloud and container security By request sysdig.com/products/platform

Company Product Purpose Availability Website

Akamai
Linode Kubernetes
Engine (LKE)

Fully managed Kubernetes
container orchestration engine

By request linode.com/products/kubernetes

Amazon Web
Services

Amazon Elastic
Container Service (ECS)

Fully managed containers Free tier aws.amazon.com/ecs

Amazon Elastic
Kubernetes Service (EKS)

Managed Kubernetes service
By request

aws.amazon.com/eks

AWS Fargate Serverless compute for containers aws.amazon.com/fargate

Ambassador
Labs

Edge Stack API Gateway Kubernetes-native API gateway Free tier
getambassador.io/products/edge-
stack/api-gateway

Anchore

Anchore Enterprise
Software composition analysis
for cloud-native apps

Trial period anchore.com

Grype
Vulnerability scanning for
container images and filesystems

Open source github.com/anchore/grype

Apache
Software
Foundation

Ozone
Scalable, distributed
object storage

Open source

ozone.apache.org/docs/1.0.0/index.html

SkyWalking
App performance monitoring
tool for distributed systems

skywalking.apache.org

Aqua Security

Aqua CNAPP Cloud-native security platform By request
aquasec.com/aqua-cloud-native-
security-platform

kube-bench
Kubernetes compliance check
with CIS benchmark

Open source github.com/aquasecurity/kube-bench

Argo

Argo CD
Declarative continuous
delivery tool

Open source

argoproj.github.io/cd

Argo Workflows
Kubernetes-native
workflow engine

argoproj.github.io/workflows

Backstage Backstage
Open-source framework for
building developer portals

Open source backstage.io

Buildpacks Cloud Native Buildpacks
Automate build and runtime
environments

Open source buildpacks.io

Canonical Juju
Orchestration engine for
software operators

Open source juju.is

20
24

 P
A

R
TN

E
R

S

http://fairwinds.com/managed-kubernetes
http://spot.io/product/ocean
http://sysdig.com/products/platform
http://linode.com/products/kubernetes
http://aws.amazon.com/ecs
http://aws.amazon.com/eks
http://aws.amazon.com/fargate
http://getambassador.io/products/edge-stack/api-gateway
http://getambassador.io/products/edge-stack/api-gateway
http://anchore.com
http://github.com/anchore/grype
http://ozone.apache.org/docs/1.0.0/index.html
http://skywalking.apache.org
http://aquasec.com/aqua-cloud-native-security-platform
http://aquasec.com/aqua-cloud-native-security-platform
http://github.com/aquasecurity/kube-bench
http://argoproj.github.io/cd
http://argoproj.github.io/workflows
http://backstage.io
http://buildpacks.io
http://juju.is

PAGE 46TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

DZONE'S 2024 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

CAST AI CAST AI Kubenrnetes automation Free tier cast.ai

Chaos Mesh Chaos Mesh
Cloud-native chaos
engineering platform

Open source chaos-mesh.org

Chronosphere Chronosphere
Observability with metrics, logs,
traces, and telemetry pipelines

By request chronosphere.io

Cilium Hubble
Network, service, and security
observability for Kubernetes

Open source github.com/cilium/hubble

CircleCI CircleCI CI/CD automation Free tier circleci.com

CloudBees CloudBees CI CI for Jenkins in the enterprise By request
cloudbees.com/capabilities/
continuous-integration

Cloudsmith Cloudsmith
Secure, cloud-native
artifact management

Free tier cloudsmith.com

CNI CNI Networking for Linux containers Open source cni.dev

Cockroach Labs CockroachDB Distributed SQL database Free tier cockroachlabs.com

containerd containerd
Industry-standard container
runtime

Open source containerd.io

Contour Contour Kubernetes ingress controller Open source projectcontour.io

Cortex Cortex Internal developer portal By request cortex.io

Couchbase Autonomous Operator
Self-managed Couchbase
for Kubernetes

Free couchbase.com/products/operator

CRI-O CRI-O Lightweight container runtime Open source cri-o.io

Crossplane Crossplane
Cloud-native control plane
framework

Open source crossplane.io

DaoCloud DaoCloud 5.0 Cloud-native operating system Free tier daocloud.io

Datadog Container Monitoring
Monitor and secure
containerized environments

Free tier
datadoghq.com/product/container-
monitoring

Diamanti

Ultima Accelerator
Optimized storage and
networking to improve
Kubernetes performance

By request
diamanti.com/products/ultima-
accelerator

Ultima Enterprise
High-performance Kubernetes
storage and data management

Trial period
diamanti.com/products/ultima-
enterprise

DigitalOcean
DigitalOcean
Kubernetes

Managed Kubernetes clusters By request
digitalocean.com/products/
kubernetes

Docker
Docker Desktop Container software Free tier docker.com/products/docker-desktop

Docker Hub Container registry Trial period docker.com/products/docker-hub

Dynatrace Dynatrace Platform
End-to-end observability with
AIOps and app security

Trial period dynatrace.com

Envoy Envoy Proxy
Edge and service proxy for
cloud-native apps

Open source envoyproxy.io

etcd etcd Distributed key-value store Open source etcd.io

F5

Aspen Mesh
Deploy, manage, and monitor
microservices at scale

By request f5.com/products/aspen-mesh

NGINX Ingress
Controller

Kubernetes-native API gateways,
load balancers, Ingress controllers

Trial period
nginx.com/products/nginx-ingress-
controller

Falco Falco Container runtime security Open source falco.org

http://cast.ai
http://chaos-mesh.org
http://chronosphere.io
http://github.com/cilium/hubble
http://circleci.com
http://cloudbees.com/capabilities/continuous-integration
http://cloudbees.com/capabilities/continuous-integration
http://cloudsmith.com
http://cni.dev
http://cockroachlabs.com
http://containerd.io
http://projectcontour.io
http://cortex.io
http://couchbase.com/products/operator
http://cri-o.io
http://crossplane.io
http://daocloud.io
http://datadoghq.com/product/container-monitoring
http://datadoghq.com/product/container-monitoring
http://diamanti.com/products/ultima-accelerator
http://diamanti.com/products/ultima-accelerator
http://diamanti.com/products/ultima-enterprise
http://diamanti.com/products/ultima-enterprise
http://digitalocean.com/products/kubernetes
http://digitalocean.com/products/kubernetes
http://docker.com/products/docker-desktop
http://docker.com/products/docker-hub
http://dynatrace.com
http://envoyproxy.io
http://etcd.io
http://f5.com/products/aspen-mesh
http://nginx.com/products/nginx-ingress-controller
http://nginx.com/products/nginx-ingress-controller
http://falco.org

PAGE 47TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

DZONE'S 2024 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Fluent Bit Fluent Bit
End-to-end observability pipeline
for containerized environments

Open source fluentbit.io

Flux

Flagger
Progressive delivery operator
for Kubernetes

Open source

flagger.app

Flux
Continuous delivery solutions
for Kubernetes

fluxcd.io

Google Cloud
Google Kubernetes
Engine

Scalable and fully automated
Kubernetes service

Trial period cloud.google.com/kubernetes-engine

Grafana Labs Grafana Cloud Analytics and monitoring tool Free tier grafana.com/products/cloud

Harbor Harbor
Cloud-native registry for managing
and securing container images

Open source goharbor.io

Harness Harness
Software delivery pipeline
automation

Free tier harness.io

harvesterhci.io Harvester
Cloud-native hyperconverged
infrastructure

Open source harvesterhci.io

HashiCorp Terraform Infrastructure automation Open source terraform.io

Helm Helm Package manager for Kubernetes Open source helm.sh

Huawei Cloud Cloud Container Engine Fully hosted Kubernetes service By request
huaweicloud.com/intl/en-us/product/
cce.html

IBM
Cloud Kubernetes
Service

Managed Kubernetes platform Trial period ibm.com/products/kubernetes-service

Isovalent Isovalent
eBPF-based networking,
security, and observability

By request isovalent.com

Istio Istio Service mesh Open source istio.io

Jenkins X Jenkins X Cloud-native CI/CD Open source jenkins-x.io

JFrog
JFrog Software Supply
Chain Platform

DevOps, software supply chain
security, pipeline automation

Free tier jfrog.com/platform

K3s K3s
Kubernetes distribution built for
IoT and Edge computing

Open source k3s.io

Kanister Kanister
Framework for app-level data
management on Kubernetes

Open source kanister.io

KEDA KEDA
Kubernetes-based, event-driven
autoscaler

Open source keda.sh

Keptn Keptn
Cloud-native app delivery
automation

Open source keptn.sh

Knative Knative
Serverless and event-driven app
development and deployment

Open source knative.dev

Komodor Komodor
Cluster management and
troubleshooting

Trial period komodor.com

Kong
Ingress Controller

Kubernetes-native API
management

Trial period
konghq.com/products/kong-ingress-
controller

Kong Mesh Enterprise service for Kubernetes By request konghq.com/products/kong-mesh

KubeEdge KubeEdge
Kubernetes-native edge
computing framework

Open source kubeedge.io

http://fluentbit.io
http://flagger.app
http://fluxcd.io
http://cloud.google.com/kubernetes-engine
http://grafana.com/products/cloud
http://goharbor.io
http://harness.io
http://harvesterhci.io
http://terraform.io
http://helm.sh
http://huaweicloud.com/intl/en-us/product/cce.html
http://huaweicloud.com/intl/en-us/product/cce.html
http://ibm.com/products/kubernetes-service
http://isovalent.com
http://istio.io
http://jenkins-x.io
http://jfrog.com/platform
http://k3s.io
http://kanister.io
http://keda.sh
http://keptn.sh
http://knative.dev
http://komodor.com
http://konghq.com/products/kong-ingress-controller
http://konghq.com/products/kong-ingress-controller
http://konghq.com/products/kong-mesh
http://kubeedge.io

PAGE 48TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

DZONE'S 2024 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Kubermatic

KubeOne
Automation of Kubernetes
cluster management

By request

kubermatic.com/products/
kubermatic-kubeone

Kubernetes Platform
Auomated hybrid and multi-
cloud Kubernetes

kubermatic.com/products/
kubermatic-kubernetes-platform

Kubernetes Kubernetes Container orchestration Open source kubernetes.io

KubeVirt KubeVirt
Build a virtualization API
for Kubernetes

Open source kubevirt.io

Kuma Kuma
Service mesh for controlling,
securing, and monitoring
microservices

Open source kuma.io

Kyverno Kyverno
Kubernetes-native policy
management

Open source kyverno.io

Lacework
Polygraph® Data
Platform

Security for DevOps, containers,
and cloud environments

By request lacework.com

Linkerd Linkerd
Service mesh for observability,
security, and reliability in
Kubernetes

Open source linkerd.io

Loft vCluster
Lightweight, virtual
Kubernetes clusters

Free tier vcluster.com

Logz.io Open 360 Platform
Full infrastructure and
app observability

Trial period logz.io

Longhorn Longhorn
Cloud-native distributed block
storage for Kubernetes

Open source longhorn.io

Mend.io Mend Platform App security By request mend.io/mend-platform

Metalstack.cloud Metalstack.cloud
Automate bare-metal
infrastructure for Kubernetes
clusters

By request metalstack.cloud

Mia-Platform Mia-Platform
Build IDPs, self-serve developers,
and ship applications faster

By request mia-platform.eu

Microsoft Azure
Azure Kubernetes
Service

Managed Kubernetes platform Trial period
azure.microsoft.com/en-us/products/
kubernetes-service

MinIO MinIO Object storage solution By request min.io

Mirantis

Mirantis Container Cloud
Container infrastructure
management

By request

mirantis.com/software/mirantis-
container-cloud

Mirantis Container
Runtime

Secure, industry-standard
container runtime

mirantis.com/software/container-
runtime

Mirantis Kubernetes
Engine

Container orchestration

Trial period

mirantis.com/software/mirantis-
kubernetes-engine

Mirantis Secure Registry Enterprise container registry
mirantis.com/software/mirantis-
secure-registry

NetApp

Astra
Protect, move, and store
Kubernetes data

Free tier netapp.com/cloud-services/astra

Cloud Insights
Continuously monitor and
troubleshoot Kubernetes
storage infrastructure

Trial period netapp.com/cloud-services/kubernetes

Spot CloudCheckr Cloud cost management platform By request spot.io/product/cloudcheckr

New Relic Pixie Kubernetes observability Free tier
newrelic.com/platform/kubernetes-
pixie

http://kubermatic.com/products/kubermatic-kubeone
http://kubermatic.com/products/kubermatic-kubeone
http://kubermatic.com/products/kubermatic-kubernetes-platform/
http://kubermatic.com/products/kubermatic-kubernetes-platform/
http://kubernetes.io
http://kubevirt.io
http://kuma.io
http://kyverno.io
http://lacework.com
http://linkerd.io
http://vcluster.com
http://logz.io
http://longhorn.io
http://mend.io/mend-platform
http://metalstack.cloud
http://mia-platform.eu
http://azure.microsoft.com/en-us/products/kubernetes-service
http://azure.microsoft.com/en-us/products/kubernetes-service
http://min.io
http://mirantis.com/software/mirantis-container-cloud
http://mirantis.com/software/mirantis-container-cloud
http://mirantis.com/software/container-runtime
http://mirantis.com/software/container-runtime
http://mirantis.com/software/mirantis-kubernetes-engine
http://mirantis.com/software/mirantis-kubernetes-engine
http://mirantis.com/software/mirantis-secure-registry
http://mirantis.com/software/mirantis-secure-registry
http://netapp.com/cloud-services/astra
http://netapp.com/cloud-services/kubernetes
http://spot.io/product/cloudcheckr
http://newrelic.com/platform/kubernetes-pixie
http://newrelic.com/platform/kubernetes-pixie

PAGE 49TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

DZONE'S 2024 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Ngrok Ngrok Globally distributed reverse proxy Free tier ngrok.com

Nirmata

Nirmata Enterprise
for Kyverno

Policy-based security,
compliance, and governance

Free tier

nirmata.com/nirmata-enterprise-for-
kyverno

Nirmata Policy Manager
Security, automation, and
governance for Kubernetes

nirmata.com/policy-manager

Notary Notary
Specs and tools for software
supply chain security

Open source notaryproject.dev

Nutanix

Kubernetes Engine Kubernetes management By request
nutanix.com/products/kubernetes-
engine

Nutanix Kubernetes
Platform

Kubernetes management for
platform engineering

Trial period
nutanix.com/products/kubernetes-
management-platform

Octopus Deploy Octopus Deploy DevOps automation Trial period octopus.com

Okteto Okteto
Developer environment
automation

Free tier okteto.com

Open Policy
Agent

Open Policy Agent Policy engine Open source openpolicyagent.org

Operator
Framework

Operator Framework
Toolkit to manage Kubernetes
native apps

Open source operatorframework.io

Oracle
Cloud Infrastructure
(OCI)

Scalable cloud services for
enterprise apps

Free tier oracle.com/cloud

OVHcloud Managed Kubernetes Container orchestration Free
us.ovhcloud.com/public-cloud/
kubernetes

Palo Alto Prisma Cloud CNAPP By request paloaltonetworks.com/prisma/cloud

Platform9
Platform9 Managed
Kubernetes (PMK)

Kubernetes for AI/ML projects
for on-prem and colocation
infrastructure

By request platform9.com/managed-kubernetes

Portainer Portainer Container management Free tier portainer.io

Portworx Portworx Platform Container data management Free tier portworx.com/platform

Prometheus Prometheus
Cloud-native monitoring and
alerting platform

Open source prometheus.io

Rafay Cloud-Native Platform
Automation for Kubernetes
operations, security, and
app delivery

Trial period
rafay.co/platform/accelerate-cloud-
native-adoption

Rancher Rancher
Kubernetes management
platform

Free tier rancher.com

Red Hat

Ansible Automation
Platform

IT automation By request ansible.com

OpenShift
Build, modernize, and deploy
apps at scale Trial period

redhat.com/en/technologies/cloud-
computing/openshift

Quay Container registry quay.io

Quay Clair
Vulnerability static analysis
for containers

Open source github.com/quay/clair

Redapt Redapt End-to-end integration By request redapt.com

Release
Technologies

Release Delivery Container-based EaaS platform By request
prod.releasehub.com/product/release-
delivery

Replicated Replicated Platform
Kubernetes app delivery
and management

Trial period replicated.com

http://ngrok.com
http://nirmata.com/nirmata-enterprise-for-kyverno
http://nirmata.com/nirmata-enterprise-for-kyverno
http://nirmata.com/policy-manager
https://notaryproject.dev
http://nutanix.com/products/kubernetes-engine
http://nutanix.com/products/kubernetes-engine
http://nutanix.com/products/kubernetes-management-platform
http://nutanix.com/products/kubernetes-management-platform
http://octopus.com
http://okteto.com
http://openpolicyagent.org
http://operatorframework.io
http://oracle.com/cloud
http://us.ovhcloud.com/public-cloud/kubernetes
http://us.ovhcloud.com/public-cloud/kubernetes
https://paloaltonetworks.com/prisma/cloud
http://platform9.com/managed-kubernetes
http://portainer.io
http://portworx.com/platform
http://prometheus.io
http://rafay.co/platform/accelerate-cloud-native-adoption
http://rafay.co/platform/accelerate-cloud-native-adoption
http://rancher.com
http://ansible.com
http://redhat.com/en/technologies/cloud-computing/openshift
http://redhat.com/en/technologies/cloud-computing/openshift
http://quay.io
http://github.com/quay/clair
http://redapt.com
http://prod.releasehub.com/product/release-delivery
http://prod.releasehub.com/product/release-delivery
http://replicated.com

PAGE 50TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

DZONE'S 2024 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Rook Rook
Cloud-native storage
for Kubernetes

Open source rook.io

ScaleOps ScaleOps
Auomated Kubernetes
resource optimization

Trial period scaleops.com

Scaleway

Container Registry Docker repository
Free tier

scaleway.com/en/container-registry

Kubernetes Kapsule Managed Kubernetes scaleway.com/en/kubernetes-kapsule

Kubernetes Kosmos
Pod launch and Kubernetes
workload management

By request scaleway.com/en/kubernetes-kosmos

Snyk Snyk Container
Container and Kubernetes
security

Free tier
snyk.io/product/container-
vulnerability-management

Solo.io Gloo Platform
Unified application
networking for APIs

By request solo.io/products/gloo-platform

SPIFFE

SPIFFE
Universal identity control plane
for distributed systems

Open source

spiffe.io

SPIRE
API toolchain for building trust
between software systems

github.com/spiffe/spire

Splunk Cloud Platform
Cloud-based data analytics for
real-time analysis

Trial period
splunk.com/en_us/products/splunk-
cloud-platform.html

Stackwatch Kubecost
Kubernetes cost management
and monitoring

Free tier kubecost.com

Sumo Logic Sumo Logic SaaS log analytics platform Free tier sumologic.com

SUSE NeuVector Prime Full lifecycle container security Free tier suse.com/products/neuvector

Sysdig Sysdig Monitor
Kubernetes and cloud
monitoring with a managed
Prometheus service

By request sysdig.com/products/monitor

Teleport
Teleport Access
Platform

Scalable Kubernetes RBAC Trial period goteleport.com/kubernetes-access

TensorFlow TensorFlow
Create production-grade
ML models

Open source tensorflow.org

The Linux
Foundation

PyTorch
Optimized tensor library
for deep learning

Open source pytorch.org

Tigera

Calico Cloud
Security for containers and
Kubernetes

Trial period

tigera.io/tigera-products/calico-cloud

Calico Enterprise
Kubernetes network security
and observability

tigera.io/tigera-products/calico-
enterprise

Calico Open Source
Networking and security for
containers and Kubernetes

Open source tigera.io/tigera-products/calico

Traefik Labs

Traefik Enterprise Unified API gateway and Ingress

Trial period

traefik.io/traefik-enterprise

Traefik Hub
Kubernetes-native API
management

traefik.io/traefik-hub

Traefik Proxy Cloud-native application proxy Open source traefik.io/traefik

Trilio Kubernetes Backup
Kubernetes backup and recovery
for on-prem or cloud

By request
trilio.io/products/kubernetes-backup-
and-recovery

Upwind
Upwind Cloud
Security Platform

CNAPP By request upwind.io

http://rook.io
http://scaleops.com
http://scaleway.com/en/container-registry
http://scaleway.com/en/kubernetes-kapsule
http://scaleway.com/en/kubernetes-kosmos
http://snyk.io/product/container-vulnerability-management
http://snyk.io/product/container-vulnerability-management
http://solo.io/products/gloo-platform
http://spiffe.io
http://github.com/spiffe/spire
http://splunk.com/en_us/products/splunk-cloud-platform.html
http://splunk.com/en_us/products/splunk-cloud-platform.html
http://kubecost.com
http://sumologic.com
http://suse.com/products/neuvector
http://sysdig.com/products/monitor
http://goteleport.com/kubernetes-access
http://tensorflow.org
http://pytorch.org
http://tigera.io/tigera-products/calico-cloud
http://tigera.io/tigera-products/calico-enterprise
http://tigera.io/tigera-products/calico-enterprise
http://tigera.io/tigera-products/calico/
http://traefik.io/traefik-enterprise
http://traefik.io/traefik-hub
http://traefik.io/traefik
http://trilio.io/products/kubernetes-backup-and-recovery
http://trilio.io/products/kubernetes-backup-and-recovery
http://upwind.io

PAGE 51TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2024 DZONE

DZONE'S 2024 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Veeam

Kubestr
Discover, validate, and evaluate
Kubernetes storage options

Open source kubestr.io

Veeam Kasten
Kubernetes data protection
and mobility

Sandbox
veeam.com/products/cloud/
kubernetes-data-protection.html

Vitess Vitess
Deploy, scale, and manage
large clusters of MySQL
database instances

Open source vitess.io

VMWare Tanzu

Kubernetes Grid
Integrated

Kubernetes management
By request

tanzu.vmware.com/kubernetes-grid

Tanzu Platform Accelerate delivery of apps tanzu.vmware.com/platform

Volcano Volcano
Cloud-native batch
scheduling system

Open source volcano.sh

Windocks Windocks
Protect and provision structured
and unstructured data

Free tier windocks.com

Wiz Wiz CNAPP
Unified cloud security from
prevention to detection

By request wiz.io/product

Zesty
Commitment Manager

Automated AWS discount
management By request

zesty.co/commitment-manager

Zesty Disk Autoscale EBS volumes zesty.co/zesty-disk

http://kubestr.io
http://veeam.com/products/cloud/kubernetes-data-protection.html
http://veeam.com/products/cloud/kubernetes-data-protection.html
http://vitess.io
http://tanzu.vmware.com/kubernetes-grid
http://tanzu.vmware.com/platform
http://volcano.sh
http://windocks.com
http://wiz.io/product
http://zesty.co/commitment-manager
https://zesty.co/zesty-disk

At DZone, we foster a collaborative environment that empowers developers and tech professionals
to share knowledge, build skills, and solve problems through content, code, and community. We
thoughtfully — and with intention — challenge the status quo and value diverse perspectives so that,
as one, we can inspire positive change through technology.

Copyright © 2024 DZone. All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by means of electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

3343 Perimeter Hill Dr, Suite 100
Nashville, TN 37211
888.678.0399 | 919.678.0300

