
Guide

Rightsizing Kubernetes
compute infrastructure
Essential tools & practical guidance for eliminating waste &
maximizing resource utilization for cloud-native applications

Table of contents

Introduction

Pod resource requests: fine-tuning
efficiency in Kubernetes

Where to start your rightsizing efforts

Gaining visibility to monitor performance

Embracing automation for
continuous rightsizing

Using Vertical Pod Autoscaler (VPA)

Automate and optimize CloudOps for
Kubernetes with Spot Ocean

03

04

05

06

08

09

11

Introduction
One of the main drivers of surging container adoption over recent years has been
the clear efficiency advantages that containers offer. Yet 66% of respondents in
our 2023 State of CloudOps report identified cost management as a key area
for improvement.

So why are so many companies failing to see the promised cost benefits
of containerization?

One of the main culprits is the misallocation — and resulting waste — of compute
resources. It has been estimated that nearly half of all containers are using less
than 30% of requested CPU and memory*.

Estimating exactly how much CPU, memory, disk and network your pods are
going to require is one of the trickiest areas to get right during deployment of
cloud-native applications. At worst, this uncertainty can lead to underprovisioning
of resources resulting in serious application performance issues, but most
commonly developers play it safe by overprovisioning, which results in wasted
resources and spiraling costs.

Fortunately, in the cloud you are not stuck with physical servers: you can always
rightsize your compute infrastructure, even mid-flight. But one of the challenges
is in ensuring you have the right metrics to know when it’s appropriate to
rightsize. Once you have the relevant data, you should make investing time and
resources into rightsizing efforts a priority.

But while moment-in-time rightsizing efforts can be effective, the ultimate
goal should be to build rightsizing automation into your deployment process.
There are several established open source and commercial tools that can help, but
we found only 45% of DevOps and platform teams are using automation to optimize
resource utilization (State of CloudOps 2023).

of organizations
are maximizing
cluster
utilization
Only a handful of
engineering teams
optimize their
Kubernetes clusters
to maximize resource
utilization.
*Annual container report,
Datadog, 2020

1.5%

Guide I 3Mastering Kubernetes rightsizing

In this guide we will delve deeper into the challenges
of estimating resource needs, learn how to identify
which workloads require attention, and access
the metrics needed to make accurate rightsizing
decisions. Finally, we’ll explore the options available
for automating rightsizing and ensuring resource
utilization is continuously optimized.

Pod resource requests: fine-tuning
efficiency in Kubernetes

Challenges in estimating pod resource requests
Developers configuring pod resource requests can provide an estimate by trial and
error or run simulations with a test deployment. However, the time and effort that
development teams need to invest to provide accurate metrics of their application’s
CPU and Memory consumption can be quite extensive and often ineffective.

Even after developers dedicate time and resources to establish an accurate
measurement, test simulation metrics will almost always differ from actual
production usage. Moreover, production resource consumption invariably changes
over time, exacerbating deviations from the initial estimate.

These challenges lead many engineering teams to adopt a t-shirt sizing approach
to selecting instances - small, medium, large and extra-large - with engineers often
rounding up and greatly overprovisioning to be on the safe side.

Accurate pod resource requests are critical to driving
significant cost savings. Spot Ocean monitors workload
utilization in real time, providing accurate recommendations
for rightsizing based on actual cluster CPU and Memory usage.

Guide I 4Mastering Kubernetes rightsizing

Where to start your
rightsizing efforts
It’s tempting to start your rightsizing project off with your most expensive
applications and environments where your upfront investment may yield higher
savings, especially as monitoring costs are typically linked to the number of assets
and metrics being monitored.

However, often the quickest way to show tangible results is to start off with less
resource intensive workloads that you can easily identify as overprovisioned. Most
likely, this low hanging fruit is already on your engineers’ radar and can prove to be
a good testing ground for your first rightsizing project. From that initial success your
organization will be more willing to allocate time and resources to further rightsizing
efforts.

Pod
count

Pod M Instance
M

Memory
%

Pod
vCPU

Instance
vCPU

CPU
%

Cost per
pod (OD
hourly)

m5.large 1 6,500 8,000 81.25% 1.5 2 75% $0.096

m5.xlarge 2 13,000 16,000 81.25% 3 4 75% $0.096

m5.2xlarge 5 31,500 32,000 98.44% 7.5 8 93.75% $0.077

Supersizing
really does
save you money!

Example: Pod requires 6,500mb
of memory and 1.5vCPUs

In this example, knowing the precise memory and CPU requirements of the pod
enables you to optimize node resource allocation and reduce costs by 20%.

!

Guide I 5Mastering Kubernetes rightsizing

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

To obtain the most accurate assessment of your environment,
regardless of which one you choose to focus on, you should
monitor all instances running in it, not just a subset. The Spot
Ocean controller queries Metrics Server every five minutes,
aggregating data using maximum and mean pod utilization
values to shape its recommendations.

Gaining visibility
to monitor performance
To ascertain whether your workloads can be moved to machines with fewer
resources requires, at a minimum, visibility into their CPU and memory utilization.
Metrics such as disk and network consumption can also play an important role in
determining whether to increase or decrease resource requirements. Let’s take a
look at the various options.

For AWS users, metrics collection can be done via Amazon CloudWatch Container
Insights, enabling you to collect all relevant metrics for your ECS workloads as well
as for EKS and Kubernetes. Other options such as Metrics Server, cAdvisor and
Prometheus can be used to understand how your pods and containers utilize CPU
and memory. There are a number of considerations to take into account when
deciding which monitoring tool is right for your organization, including cost, ease-of-
use, and multi-cloud capabilities.

With your cluster utilization insights in hand, you can now rightsize your tasks and
pods while your autoscaling solution handles the underlying infrastructure.

into compute
utilization allows
proper rightsizing
of container
requirements.

Insights

Guide I 6Mastering Kubernetes rightsizing

https://aws.amazon.com/blogs/mt/introducing-container-insights-for-amazon-ecs/
https://aws.amazon.com/blogs/mt/introducing-container-insights-for-amazon-ecs/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-EKS.html
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/#metrics-server
https://github.com/google/cadvisor
https://prometheus.io/

Instance Price vCPU Memory
(GiB)

Instance storage Network
performance

c4.8xlarge $1.591 per
hour

36 60 • EBS only
• Dedicated EBS
• Bandwidth (Mbps): 4,000

10 Gigabit

c5n.large $0.108 per
hour

2 5.25 • EBS only
• EBS Bandwidth (Mbps): Up to 4,750

Up to 25 Gigabit

Rightsizing
tip

Sometimes rightsizing can yield dramatic results
as seen here with the c5n.large.

It provides all the networking capacity needed
for communication-intensive workloads without
the excess CPU and Memory baggage that the
c4.8xlarge has and for 94% cost savings!

Criteria for downsizing and testing
After observing workload resource utilization, anything less than 20% utilized is
typically an excellent candidate for downsizing. Even if utilization is higher, but still
nowhere near max capacity, it’s recommended that you downsize.

It is essential to test workload performance on rightsized instances to make sure
there is no performance degradation. If you have both production and testing/
QA environments for the same application workload, first rightsize on the lower
environments and then use load testing tools such as Jmeter, Gatling or others to
evaluate performance. Once that’s done, ongoing monitoring of your application’s
behavior in your production environment should be done with APM tools such
as New Relic and AppDynamics to ensure that the rightsizing does not impact
performance at any point.

20%
utilized

Downsizing
candidate!
Seriously consider
moving down a size
when utilization is
under 20%.

Guide I 7Mastering Kubernetes rightsizing

https://jmeter.apache.org/
https://gatling.io/
https://newrelic.com/
https://www.appdynamics.com/

Embracing automation for
continuous rightsizing
Even with properly defined resource requirements there is still a risk of
misconfiguration, unless you have implemented automated rightsizing. Someone
or something (a CI/CD system for example) can revert any resource update,
resulting in misconfigured resource requirements for your services or deployments.
Additionally, production resource consumption usually changes over time causing a
mismatch between requirements and actual resources.

To ensure this doesn’t happen there are several options for automating rightsizing.
For a DIY approach, you can either implement automated rightsizing at the
beginning of the CI process or insert it into your CD process.

For the beginning of the CI process, adding a resource update step to the existing
automation of your Deployment Yaml generator will do the trick. This will result
in a ready-to-apply Kubernetes Deployment object with the rightsized resource
requirements configuration.

For the end of the CD process, an in-cluster mechanism to intercept any updates
to the Kubernetes Deployment object will override any misconfigured resource
requests and rightsize them on the fly.

Guide I 8Mastering Kubernetes rightsizing

Automation
is key to
CloudOps
success!
Intelligent
automation
ensures your
cloud infrastructure
is always scalable,
responsive and
continuously
optimized, while
freeing DevOps
teams from
time-consuming
management tasks.

Automated rightsizing

Rightsizing
solution

1

PodContainer
infrastructure
management

solution

Pod

Node

Change resources

2 Pods in pending state

4

Pods scheduled

3 Additional nodes allocated

Using Vertical Pod Autoscaler (VPA)
If you are looking for a more out-of-box solution that only requires minor
configuration and will also dynamically assess whether your deployments are
rightsized, there is Kubernetes’ native VPA or Vertical Pod Autoscaler.

The VPA uses live data to set limits on container resources.

Most containers adhere more closely to their initial requests rather than to upper
limit requests. As a result, the Kubernetes default scheduler overcommits a node’s
memory and CPU reservations. To deal with this, the VPA increases and decreases
the requests made by pod containers to ensure actual usage is in line with available
memory and CPU resources.

Guide I 9Mastering Kubernetes rightsizing

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

Some workloads can require short periods of high utilization. Increasing request
limits by default entails wasting unutilized resources and limits the nodes that can
run those workloads. Horizontal Pod Autoscaler (HPA) may help with this in some
cases, but in other cases, the application may not easily support distribution of load
across multiple instances.

A VPA deployment calculates target values by monitoring resource utilization, using
its recommender component. Its updater component evicts pods that must be
updated with new resource limits. Finally, the VPA admission controller overwrites
the pod resource requests when they are created, using a mutating admission
webhook.

Limitations of the VPA
Updating running pods is still experimental in VPA, and performance in large
clusters remains untested. VPA reacts to most out-of-memory events, but not all,
and the behavior of multiple VPA resources that match the same pod remains
undefined. Finally, VPA recreates pods when updating pod resources, possibly on a
different node. As a result, all running containers restart.

Best Practices for using the VPA
Two best practices for making efficient use of Vertical Pod Autoscaler:

	• Avoid using HPA and VPA in tandem—HPA and VPA are incompatible. Do not
use them together for the same set of pods, unless you configure the HPA to
use either custom or external metrics.

	• Use VPA together with Cluster Autoscaler—VPA might occasionally
recommend resource request values which exceed available resources. This
can result in resource pressure and cause pods to go into a pending status.
The Cluster Autoscaler can mitigate this behavior by spinning up new nodes in
response to pending pods.

Guide I 10Mastering Kubernetes rightsizing

Automate and optimize CloudOps
for Kubernetes with Spot Ocean
Spot Ocean is NetApp’s market-leading multi-cloud container management solution.
It offers comprehensive automation and optimization that reduces the complexity
and overhead of running K8s at scale, freeing operations teams from manual
cluster management and delivering highly scalable, available and cost-efficient
infrastructure that always meets application demands.

User

User

API server

API server

Webhook server

Webhook server

Spot by NetApp

Spot by NetApp

ETCD

ETCD

API request
for K8s object

Admission
review

Mutated K8s object with applied rightsizing resources

GET
rightsizing

suggestions

Container
resources

suggestions
Admission
response
(container

resources mutated
with rightsizing

suggestions)

Rightsizing automation during deployment

Guide I 11Mastering Kubernetes rightsizing

Automated rightsizing with Spot Ocean
For a completely turnkey solution Spot Ocean provides resource utilization analysis
and rightsizing recommendations for all containerized workloads which can be
implemented as part of the CI process or when a Deployment is being created on
the cluster.

Based on the rightsized requirements, Ocean continuously manages the underlying
nodes ensuring that you always have the optimal compute power needed by your
cluster.

Learn more about Spot Ocean’s automated rightsizing capabilities

	• Blog: Kubernetes automatic rightsizing with Dynamic Admission Controller
	• Documentation: Spot Ocean rightsizing
	• Video: Watch an 8-minute demonstration of Spot Ocean

Spot Ocean simplifies infrastructure management for container orchestration tools.
With robust, container-driven infrastructure auto-scaling and intelligent rightsizing
for container resource requirements, engineers can code more, while operations
can literally “set and forget” the underlying spot instance cluster.

>> Try Ocean for free!

4-12sep23

Contact > sales@spot.io | www.spot.io © 2023 NetApp. All rights reserved.

https://spot.io/blog/kubernetes-and-jenkins-going-from-continuous-integration-to-continuous-optimization/
https://spot.io/blog/kubernetes-automatic-rightsizing-with-dynamic-admission-controller/
https://spot.io/blog/kubernetes-automatic-rightsizing-with-dynamic-admission-controller/
https://spot.io/blog/kubernetes-automatic-rightsizing-with-dynamic-admission-controller/
https://docs.spot.io/ocean/concepts/ocean-cloud/right-sizing/
https://youtu.be/2dx-ImY8aBo
https://spot.io/product/ocean/#demo-popup
mailto:sales%40spot.io?subject=
https://spot.io/?utm_source=na&utm_medium=Guide&utm_campaign=Azure_cost_optimization_guide

